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AN INVESTIGATION OF SPINUP DYNAMICS OF AXIAL GYROSTATS

USING ELLIPTIC INTEGRALS AND THE METHOD OF AVERAGING

Christopher Dean Hall, Ph.D.

Cornell University 1992

A gyrostat is a rigid body containing an internal source of angular momentum

which does not alter the geometry of the system. Because of their relative sim-

plicity, gyrostats are frequently used to model dual-spin spacecraft. An axial

gyrostat is composed of two rigid bodies: an asymmetric platform and an ax-

isymmetric rotor aligned with a principal axis of the platform. Rotation of the

rotor relative to the platform provides a source of internal angular momentum,

and does not affect the moment of inertia tensor of the gyrostat. In this thesis,

we consider the dynamics of axial gyrostats in the absence of energy dissipation

and external torques. Spinup of the rotor is effected by a small constant internal

axial torque, g.. The dynamics axe described by four first-order ordinary differ-

ential equations, which admit exact solutions in terms of elliptic functions for

g. = 0. Application of the method of averaging (valid for small g.) Jreduces the

problem to a single first-order differential equation, which is studied analytically

and numerically. This single equation accurately describes most spinup trajec-

tories. However, when spinup trajectories cross the instantaneous separatrices
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of the ga = 0 system, the 0(1) frequency of the unaveraged system vanishes.

The averaged equations are not valid near these separatrix crossings, and we de-

velop an approximate equation valid in a neighborhood of the separatrix, which

we use to connect the averaged solutions across the separatrix. When applied

iteratively in a neighborhood of the separatrix, the approximate equation agrees

qualitatively with the exact solution.
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Chapter 1

Introduction

A dual-spin spacecraft consists of two bodies constrained to relative rotation

about a shaft connecting the bodies, but otherwise free to rotate in space (see

Fig. 1.1). The bodies are in general flexible and dissipative, as is the connection

between them, and all spacecraft are subject to environmental torques such as the

gravity gradient torque; however, as a first approximation it is useful to model

dual-spin spacecraft as two rigid bodies connected by a rigid shaft, free of external

torques, and without energy dissipation. Such a model is made more tractable

by further assuming one of the bodies is axisymmetric about the axis of relative

rotation. The principle benefit of this assumption is that the moment of inertia

tensor is constant for the model spacecraft. The axisymmetric body is called

the rotor, or wheel, while the other body is called the platform or core. This

model is called a gyrostat, and the differential equations describing its motion

are completely integrable in two important cases: when there is no axial torque

between the bodies, and when the relative angular velocity is held constant by

an appropriate torque. In fact, these two cases are equivalent under a suitable

change of variables, as was first shown by Kane and Fowler [45] for the special

class of axial gyrostats, where the rotor axis is aligned with, or parallel to, a

principal axis of the platform. For axial gyrostats, a closed form solution for
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the angular momentum or angular velocity variables in terms of Jacobi's elliptic

functions has been given by several authors (see Section 1.2.1).

Dual-spinners are usually placed into orbit with zero relative angular velocity,

i.e., the spacecraft spins as a single body. Then a spinup motor provides an equal

and opposite torque to both bodies along the shaft. The desired effect of the axial

torque is to spin up the rotor and despin the platform, thereby transferring all

or most of the angular momentum to the rotor. Usually this torque is constant

for simplicity of control system design, and small to prevent counter-rotation of

the platform. For some gyrostat configurations, a large torque is preferable to a

small torque, as demonstrated in Chapter 3.

The success of this maneuver, known as the dual-spin turn, platform de-

spin, or simply spinup, depends on the energy dissipation inherent in all real

spacecraft. The dual-spin condition is asymptotically stable provided the en-

ergy dissipation rates of the platform and rotor satisfy certain conditions. These

conditions depend on the particular configuration being analyzed, but roughly

speaking, platform energy dissipation is stabilizing, and rotor energy dissipation

is destabilizing. These stability criteria hold even if the rotor is designed to spin

about its minor moment of inertia axis; thus the dual-spin spacecraft defies the

so-called major axis rule [38, ch. 7].

Actual implementations of dual-spinners vary significantly: for example, he

first prolate dual-spin satellite, TACSAT I (Fig. 1.1), was mostly rotor, while a

typical geostationary communications satellite consists of a large platform with a

relatively small, fast momentum wheel (38, ch. 11]. The latter are usually called

bias momentum satellites. Although these two extremes bear little resemblance

to one another, they may both be successfully modeled by the simple gyrostat.

A gyrostat is a body with moving parts but constant moment of inertia tensor.

A simple gyrostat is a rigid body with an attached rigid wheel spinning about an

axis of symmetry fixed in the body.
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Figure 1.1. The TACSAT I Dual-Spin Satellite. TACSAT I, launched in 1968.
was the first satellite to successfully spin about its minor axis [38. pp. 448-449].
The antenna is the platform, and is intended to point continuously at the Earth.
The cylindrical component is the rotor, providing gyroscopic stability through its
spin of about 60 rpm [42].
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Over the years, many researchers have investigated the gyrostat and other

dual-spin models in many settings, including such variations as spring-mass-

dampers, rotor flexibility, flexible appendages, time-dependent inertia properties,

and external torques. A good general reference is the textbook by Hughes [38].

An introduction to the literature is given in the next chapter.

As noted above, the simple gyrostat leads to a completely integrable system

of equations in two important cases: zero internal axial torque, and constant

rotor angular momentum relative to the platform. The dynamics are fairly well

understood in these cases, in both the torque-free and inverse-square central force

environments. Unfortunately, these cases only represent quasi-static views of the

system dynamics. In particular, the dynamics during rotor spinup offer further

challenges to researchers, especially in the presence of rotor asymmetry and/or

unbalance.

Since a closed form solution exists for the angular momentum of an axial

gyrostat with zero axial torque, the introduction of a small constant torque invites

the use of perturbation metlods to study the equations of motion. A special case

where the unperturbed solution takes the form of trigonometric functions has

been investigated by Gebman and Mingori [23]. No one, however, has used the

full elliptic function solution in a perturbation analysis of spinup dynamics. This

leads us to the following problem statement.

1.1 Problem Statement

The goal of this thesis is to study the spinup dynamics of dual-spin spacecraft us-

ing the axial gyrostat as an approximate model. Specifically, the elliptic function

solution of the non-dimensionalized equations of motion for zero axial torque is

to be used as the starting point for a perturbation analysis based on the method

of averaging, valid for small spinup torques.
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1.2 Related Work

Before describing our approach and results, we give a brief discussion of published

work related to what we have done. The first topic is the elliptic function solution

for the zero torque case, i.e., the unperturbed problem. Then we discuss other

investigations of spinup dynamics, i.e., the perturbed problem. A more in-depth

introduction to the literature of dual-spin spacecraft is given in Chapter 2.

There is also a large body of literature on the subjects of averaging and

elliptic functions. Rather than discuss references here, we refer the reader to the

appropriate chapters of the thesis.

1.2.1 Closed Form Solutions for the Unperturbed Problem

As we have stated above, the equations of .notion for the simple gyrostat are

integrable in two cases: zero a:, al torque, and constant relative angular velocity.

This fact has been rediscovered several times over the past century.

In 1898, Volterra [981 proposed a gyrostat model in an effort to explain the

Earth's wobble about its spin axis. This is apparently the only treatment of a nat-

ural, i.e., non-technological, gyrostat. He gave a quite thorough treatment of the

zero axial torque case, obtaining solutions for the angular velocities as functions

of time using the Weierstrassian elliptic functions. The principal disadvantage of

his solution is the absence of any physical interpretation of the results.

More recently, in 1961, Masaitis [70] suggested that the axial gyrostat might

provide useful stabilization properties for artificial satellites. Considering the zero

axial torque case, he derived solutions for the angular velocities using Jacobi's el-

liptic functions. He also obtained rigorous stability results, and he suggested that

the elliptic function solution offered "possibilities for a perturbation treatment."

The zero axial torque case was also investigated by Leipholz [57 in 1963, mo-

tivated by flight of aerospace vehicles containing rotating parts. He also obtained

the solution for the angular velocities in terms of Jacobi's elliptic functions.
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In 1965 Leimanis [56] gave an extensive treatment of the axial gyrostat with

zero axial torque, complete with solutions for the angular velocities in terms of

Jacobi's elliptic functions, apparently following the work of Masaitis [70] and

Leipholz [57]. However, there are two errors in Leimanis' work, one of which

also appears in Leipholz's work. First, Leimanis states that the assumption of a

prolate gyrostat may be made without loss of generality. This is not true. There

is a symmetry relationship between prolate and oblate gyrostats, as we show

here in Section 3.5. However, there is a distinct difference between prolate and

intermediate gyrostats, discussed here in Section 4.7. This error does not appear

in the earlier references. Second, he omitted a factor in the quartic which occurs

in the elliptic integral, a mistake which also appears in Leipholz's paper. We give

the details in Appendix C.

In 1975 Wittenburg devoted his habilitationschrift [103] to the study of the

dynamics of gyrostats in the integrable cases, giving solutions for the angular mo-

mentum variables for several combinations of asymmetry and rotor alignment. He

developed his solutions for the constant relative rotor speed case, using Jacobi's

elliptic functions. For the cases where the rotor is not aligned with a principal axis

of the asymmetric platform, he showed how to reduce the equations to a quadra-

ture, but did not evaluate the quadrature. He also discussed this development in

his book [104].

The next, and most recent, appearance of the solution was published in 1982,

when Cochran et al [16] extended the previous results by obtaining a complete

analytical solution for the Euler angles and angle of relative rotation in terms

of elliptic functions and elliptic integrals. They used the nature of these solu-

tions to discuss a particular resonance problem which will be discussed here in

Section 2.6.2.
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1.2.2 Investigations of Spinup Dynamics

The elliptic function solutions discussed in the previous section are relevant for the

motion of gyrostats with free or constant-speed rotor. Of course, during spinup,

the rotor satisfies neither of these conditions. The interesting and very important

problem of the variable-speed rotor has been studied by several authors. Kane [43]

showed that, for axisymmetric gyrostats, the precession speed and nutation angle

are constant during spinup, which means that an axisymmetric gyrostat in a state

of "flat spin" cannot recover its nominal spin about its axis of syrametry. Sen

and Bainum [93] also studied spinup of axisymmetric gyrostats. They obtained

a closed form solution for the case where the rotor axis of symmetry lies on

the body's symmetry axis, and used a perturbation analysis to handle slight

misalignment.

The work of Gebman and Mingori [23] has some similarities to the present

work. They used a perturbation analysis to obtain an approximate solution for a

flat spin recovery problem. The principal difference between the two approaches

is that they investigated a very specific spinup problem for a subset of axial

gyrostats, with the motion starting exactly at an equilibrium of the unperturbed

system, whereas our investigation covers all possible spinup problems for all axial

gyrostats. Mathematically, their perturbation scheme involved perturbing off

of solutions using trigonometric functions, whereas our more general approach

involves starting with elliptic functions. Their work is discussed in more detail

in Appendix A.

Kane [441 investigated the spin-up dynamics of a zero-momentum gyrostat,

that is, a gyrostat with zero total angular momentum. This problem is also

addressed in Kane et al [47]. Chen and Kane [121 considered the inverse problem:

given a desired platform rotation axis and angle, determine the necessary rotor

rotation axis and angle. Hughes [38] has shown, however, that this configuration

has the same qualitative behavior as a single non-spinning rigid body. We do not
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treat zero-momentum gyrostats in this thesis.

Hubert [34,35,36,37] investigated spinup of a rigid gyrostat with two rotors:

one a constant-speed rotor, the other subject only to a viscous damping torque.

He proved that the dual-spin condition is asymptotically stable for all initial con-

ditions provided the relative angular velocity of the constant-speed rotor is fast

enough. This result corrected a previous misconception about possible instabili-

ties (cf. Kaplan [49, p. 378]). An interesting improvement to Hubert's dual-spin

maneuver has been proposed by Weissberg and Ninomiya [99]: instead of depend-

ing on passive energy dissipation, rotor torque control can be used to decrease

the core energy, leading to asymptotic stability for the dual-spin condition.

Li and Longman [59] conducted a detailed analysis using a feedback system

to control the internal axial torque of a rigid gyrostat in a circular orbit. They

determined stability and instability criteria for a number of important cases.

Among their results is an interesting extension of the free rotor - constant-speed

rotor equivalence discussed earlier.

The problem of optimally recovering from intermediate motions (i.e., not

flat spin) has been examined by Guelman [28]. He focused on prolate simple

gyrostats, and developed a control law to bring the state to one of the unperturbed

equilibrium points. Slotine and Di Benedetto [94] have developed an adaptive

control law for rigid three-rotor gyrostats that is applicable even if the mass

properties of the system are unknown.

In all these spinup studies, the rotor was taken to be axisymmetric and spin-

ning about its symmetry axis. Real rotors are of course slightly asymmetric and

slightly unbalanced. The effects of these imperfections can have dramatic effects

on spinup dynamics. These effects are discussed further in Chapter 2.
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1.3 Approach and Results

In this thesis, we give a comprehensive treatment of spinup of all axial gyrostats

where the axisymmetric rotor is aligned with a principal axis of the asymmetric

platform, and spinup is effected by a small constant axial torque. The dynamics

are described by four first-order ordinary differential equations. We work with a

dimensionless form of the equations, equating the axial torque to a small param-

eter e. When e = 0 the system has a closed form solution in terms of Jacobi's

elliptic functions as noted above. We use conservation of angular momentum to

reduce the order of the equations by one. Then by averaging over the fast dynam-

ics, we obtain a single first-order non-autonomous differential equation for the

slow evolution of kinetic energy. This equation involves complete and incomplete

elliptic integrals of the first and second kinds; numerical integration shows that

this single equation captures the salient features of spinup dynamics. For small

c, numerical integration of this equation is more efficient than integrating the full

system of equations, since the averaged equation is independent of C.

There are difficulties with averaging over the fast dynamics, however. For

some types of spinup trajectories, the flow passes through one or more reso-

nances, associated with the flow of the perturbed system crossing a sepaatrix

of the unperturbed system. In the vicinity of these resonances, the averaging

assumptions are invalid, and it becomes necessary to deal with the fast equation

and develop a solution in a neighborhood of the resonance. We obtain an ac-

curate approximation for the "thickness" of the last cycle before the separatrix

crossing, and we use a simple Euler integration technique to connect the averaged

solutions across the separatrix.

The reduction from four differential equations to one has a geometric coun-

terpart which we have found simplifies the framework in which to view spinup

dynamics. In contrast to the momentum sphere approach, which requires pic-

turing the gradual evolution of a set of integral curves drawn on a sphere (see,
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e.g., Ref. [37]), our approach permits the spinup dynamics to be described by an

abbreviated but equivaleit flow on a plane.

One result of the geometric study of spinup is the discovery of a new sym-

metry of the system, which is used to reduce the number of cases studied. The

transformation is discussed in Section 3.5, and a paper describing it has been

accepted for publication [30).

An important contribution is the development of the averaged equations. Al-

though the e = 0 solution in terms of elliptic functions has been known for some

time, apparently the solution has not previously been used to investigate the

perturbed dynamics of gyrostats. The averaged equations allow the easy iden-

tification of the resonant zones for the system. Although resonance capture in

the usual sense is not possible here, the resonances have a dispersive effect that

makes the flow sensitive to small changes in the initial conditions. In fact, one

class of resonance capture problems can be studied using our approach, and we

discuss this fact in Section 4.6.

The averaged equations also have several exact solutions. We use a further

perturbation analysis based on these exact solutions to obtain approximate solu-

tions to the averaged equations for some regions of phase space.

1.4 Outline of the Thesis

In Chapter 2 we give a review of the literature on dual-spin spacecraft and gy-

rostats. While many of these references cover topics outside the scope of this

thesis, they are included as a source for those who are interested in pursuing

some of the many open problems in this field.

The model and the basic equations of motion are developed in Chapter 3.

Also in this chapter we discuss the various symmetries of the equations, which

are used to reduce the number of cases which must be considered. Then we use

conservation of angular momentum to reduce the order of the equations from
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four to three, and we further reduce the equations to a single elliptic integral

for the case of zero spinup torque. The dimensionless inertia parameters used

here are discussed in some detail in Appendix B. In Chapter 4 we discuss the

geometric aspects of spinup dynamics. In Appendix E, we apply the equivalent

analysis to a simple nonlinear second-order differential equation with a slowly

varying parameter.

As we have mentioned above, when there is no axial torque between the

bodies, there is a closed form solution for the angular momenta in terms of

Jacobi's elliptic functions. In Chapter 5 we give the solution for all possible cases

of axial gyrostats. As a supplement to this chapter, Appendix C details the use

of Byrd and Friedman's (101 tables to evaluate the elliptic integrals.

In Chapter 6 we apply the method of averaging to the equations of motion in

order to derive approximate equations governing the slow evolution of the system.

In the process we identify resonances associated with instantaneous separatrix

crossings. These resonances are the subject of Chapter 7, where we investigate

more closely the flow near the separatrix.

In Chapter 8 we obtain approximate solutions to the slow flow equation based

on perturbing off of special exact solutions to the averaged equations developed

in Chapter 6. The resulting approximations are valid for trajectories that remain

near equilibrium points of the unperturbed system. The series expansion of

complete elliptic integrals of the third kind is required for these approximate

solutions. These expansions are developed in Appendix D.

Finally, in Chapter 9 we summarize this work and discuss future directions

for related research.



Chapter 2

Dual-Spin Spacecraft and Gyrostats:

A Guide to the Literature

The dynamics of gyrostats, and of dual-spin spacecraft in general, has been ac-

tively studied since the beginning of the space age. Researchers have examined

many modifications of the basic problem, using a wide range of techniques from

a-pplied mathematics. There is an extensive body of literature on the subject.

In this review, we try to discuss most of the important results concerning these

systems. We make no claim to completeness; however, we have tried to obtain

all of the published works which are relevant to this thesis: namely, the elliptic

function solutions, spinup dynamics, and internal resonances due to asymmetry

and unbalance.

2.1 Textbook Treatments

The simple gyrostat and some of its simpler variations have been studied for

long enough to find their way into textbooks. An excellent general reference

is the text book by Hughes [38J. He gives an extensive treatment of several

basic problems in attitude dynamics. In particular, he treats the simple gyrostat

with and without damping mechanisms, in and out of orbit, and addresses the

12



13

stability of the equilibrium motions. However, even though he gives the elliptic

function solution to the torque-free rigid body equations of motion, he doesn't

even mention that the rigid gyrostat is integrable in some cases.

Leimanis [56] and Wittenburg [104] both treat the simple gyrostat and provide

at least partial solutions to the equations of motion. Kane et al [47] cover the rigid

gyrostat in the torque-free and circular orbit environments; they also examine a

simple spinup maneuver for an initially motionless gyrostat. Rimrott [86] devotes

two chapters to the attitude dynamics of rigid gyrostats and the special case of

torque-free axisymmetric gyrostats with energy dissipation. He also gives a brief

discussion of the effects of friction in the rotor bearing. Kaplan [49] discusses the

spinup problem for the simple gyrostat, but draws erroneous conclusions about

the possibilities of dual-spin stabilization. Elementary treatments of dual-spin

spacecraft are also given by Agrawal [3] and Wiesel [102]. Finally, the volume

edited by Wertz [101] addresses some of the practical details of dual-spin satellites

and the use of passive damping mechanisms in spacecraft, and gives some details

of specific dual-spin spacecraft implementations.

Remark 1 Other than the simple spir-Lp maneuver solved in Kane et al [47],

none of these books addresses spinup dynamics, or the resonance problems asso-

ciated with rotor asymmetry and unbalance.

2.2 Classical Origins

Like most other rigid body problems, the gyrostat is not a new idea; a detailed

study of its classical roots would probably turn up several interesting results.

Roberson appears to have done some research in this direction; in [89], he stated

that the equations of motion for the simple gyrostat were given as early as 1862

by R~sal. In another paper, Roberson [87] cited Volterra's 1898 treatise [98] as

a "beautiful and definitive treatment of torque-free gyrostatic motion." In this

treatise, Volterra introduced the gyrostat as a model for the earth in order to
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explain the earth's wobble about its axis. He obtained a solution to the equations

of motion in terms of elliptic functions. Leimanis [56] and Wittenburg [104] also

cited Volterra's work, though their solutions differ markedly from Volterra's.

2.3 Initial Stability Investigations

The modern dual-spin concept has its origins in the independent discovery of its

stabilization properties by both Landon [541 and Iorillo [411 in the early 1960's 1 .

Landon's work was restricted to the case where damping exists on only one of

the two bodies; using an energy sink argument analogous to the major axis rule

for spinning spacecraft, he concluded that damping on the despun platform is

stabilizing, while damping on the rotor is destabilizing. Iorillo's work extended

the energy sink analysis to account for damping on both bodies. In both cases

the physical model consisted of two axisymmetric bodies constrained to relative

rotation about their mutual axis of symmetry.

Remark 2 In the energy sink argument, one supposes that the relative angular

velocity of the two bodies is fixed, and that the kinetic energy is approximately

described by the expression obtained if both bodies are rigid. Then in the presence

of "slow" energy dissipation, the kinetic energy will seek its minimum. As we

discuss below, one difficulty with this assumption is that the constant relative

angular velocity condition requires a non-zero motor torque, which constitutes

an energy source, complicating the energy sink argument. Note also that the

mechanism by which energy is dissipated is not specified.

Remark 3 Although the two papers [54,41] just mentioned are usually cited as

the first dual-spin papers, there were actually two earlier papers in the English

language literature. In 1961, Masaitis [70] published a very thorough analysis (dis-

cussed above in Section 1.2.1), and in 1963, Huston [39] published an interesting

'The survey paper by Likins [60] provides an excellent account of this early history.
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"note" on the gyrostat's stabilization possibilities. Also, Leimanis' book [56] ap-

peared in 1965, at about the same time as the two papers, and Leipholz's paper [57]

was published (in German) in 1963.

Since the benefits of dual-spin stabili.ation were readily apparent, but the

costs of on-orbit failure were high, it was necessary to verify the idea's feasibility

analytically. In Likins [61], a linearized stability analysis was shown to provide

results identical to the energy sink argument for a specific system consisting of

an asymmetric body with a spring-mass-damper and a symmetric rotor. Again,

both bodies were statically and dynamically balanced, and the results agreed

with the earlier work of Landon and Iorillo.

A frequently seen model in many early papers is the one introduced by Min-

gori [73]. This model consists of two rigid, axisymmetric bodies connected by a

rigid shaft along t.,e axis of symmetry; each body has a spring-mass-damper to

provide energy dissipation. In [73] a Floquet analysis was used to construct sta-

bility Lharts in terms of a variety of dimensionless parameters. Again the results

were in agreement with previous studies.

The success of these analyses resulted in the 1969 launch of the first minor

axis dual-spinner, TACSAT I (see [38, pp. 448-449]). A slight wobble about the

spacecraft's nominal spin axis inspired Likins, Mingori, and Tseng to search for

an explanation. Their interesting results were reported in [62] and [74]. In [62],

the introduction of nonlinear damping in Mingori's model led to the possibility

of stable limit cycles, while in [74], the addition of nonlinear springs was shown

to lead to variable amplitude limit cycles.

It is important to note that in all these studies, the researchers were examining

local behavior near the dual-spin condition. Global analysis of the simple gyrostat

provides more concrete results for dual-spin dynamics, particularly in regards to

the existence and stability of equilibrium rotations, usually called permanent

rotations.
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2.4 Global Analysis of the Gyrostat

Strictly speaking, the dual-spin models discussed above are not gyrostats, since

the motion of spring-mass-dampers results in time-varying inertia properties. The

gyrostat, as already noted, has the nice property of being integrable in two im-

portant cases. An important method for analyzing nonintegrable systems is to

model them as perturbations of an integrable system. Thus it makes sense to

understand the gyrostat before investigating its nonintegrable variations. How-

ever, the historical development did not follow this route. In this section, we

discuss some of the interesting and useful properties of the simple gyrostat, most

of which were published after the energy sink and linearized analyses discussed

above.

2.4.1 An interesting parallelism

In most of the early dual-spin stability analyses, the internal torque parallel to

the axis of relative rotation is taken to be zero. For the dual-spin equilibrium

position those researchers were interested in, this would indeed be the case. How-

ever, for the general problem, internal torques due to friction or a driving motor

would certainly be present. It turns out that the case of zero internal axial torque

is exactly equivalent to the case for constant angular velocity of the rotor relative

to the platform, and that these two cases are completely integrable. The first

evidence of this parallelism is found in Kane and Fowler [45], where the authors

showed the equivalence of the two problems in the case where the rotor axis is

parallel to a platform principal axis. In particular they showed how a simple

reinterpretation of parameters transforms the equations for the free rotor case to

those of the driven rotor case, and they exploited this equivalence in a discussion

of the stability of the dual-spin equilibrium condition. More complete investiga-

tions of this equivalence were given by Roberson [89] and Crespo da Silva [20].

In addition, Krishnaprasad [52] has shown that this remarkable relationship is a
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consequence of the identical Lie-Poisson structure of the two sets of equations of

motion. The book by Olver [79] contains an introduction to Lie-Poisson struc-

tures, as well as an extensive list of references.

2.4.2 Core energy: An integral of the motion

The energy sink analyses used by Landon [54], Iorillo [41], Likins [61] and others

were based on the idea of decreasing kinetic energy due to internal dissipation.

For a single spinning body, this idea leads to the major axis rule. As Landon [54]

pointed out, however, for driven rotor dual-spinners, the kinetic energy does not

necessarily decrease, since in addition to the energy sink, the motor torque acts

as an energy source. In fact, Spencer [95] has shown that Likins' analysis [61] was

incorrect for gyrostats with asymmetric platforms; he also provided a refined sta-

bility condition for this more general case. Later, Kane and Levinson [46] gave a

counterexample to "show that the energy-sink method can lead to both quantita-

tively and qualitatively incorrect descriptions of attitude motions." These efforts

made it clear that energy sink analysis for dual-spinners requires more care than

for single spinners.

Remark 4 Although the energy sink argument has intuitive appeal, it is possible

to find counter-examples even in the case of a single spinning body. Levi [58]

has shown that it is possible for the angular velocity vector of an axisymmetric

body with an internal spring-mass-damper to asymptotically approach a precessing

motion, rather than approaching a constant pure spin.

In the case of the gyrostat, exploitation of an energy integral for the rigid

case has led to more rigorous justification and guidelines for use of the energy

sink method. Hubert [37] coined the term "core energy" to describe the com-

ponent of the kinetic energy of a gyrostat due to body rotation. In the case of

constant angular velocity of the rotor relative to the platform, this is an inte-

gral of the motion, a fact recognized earlier by Leimanis [561, Wittenburg [104],
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and Roberson [87], but not exploited by them in any stability analyses. Hubert

showed that, for certain kinds of internal platform energy dissipation, the core

energy is a strong Lyapunov function for the system. This result was given a

solid theoretical basis in later work by Cochran and Shu [15], Krishnaprasad [52],

and Guelman [271.

2.4.3 Relative equilibria

As already noted, most dual-spin studies have been concerned with the motion

near the dual-spin condition. Gyrostat investigators, however, have identified the

global structure of relative equilibria, or permanent rotations, with very interest-

ing results. Masaitis [70] identified all relative equilibria for the balanced gyrostat

with asymmetric platform and zero internal axial torque. He also determined the

stability of the equilibria in each case, and provided a closed form solution for the

angular velocities. Remarkably, this work appeared before any of the dual-spin

studies appeared in the spacecraft engineering literature. Roberson [87] gave an

elegant formulation for the gyrostat equilibria, interpreting the resulting fixed

points as points of tangency between the core energy and angular momentum el-

lipsoids. He showed that there are two, four, or six relative equilibria depending

on the values of certain parameters. Wittenburg [104] extended Roberson's re-

sults, showing how the changing number of relative equilibria may be interpreted

on a certain bifurcation diagram. Krishnaprasad and Berenstein [53] determined

conditions for the existence of only two equilibria on the momentum sphere. Most

of these results are given a thorough treatment in the textbook by Hughes [38].

2.5 Gyrostats in Orbit

Just as the torque-free gyrostat offers greater potential for attitude stabilization,

so does the gyrostat in a gravity field. The problem of a gyrostat in a circular

orbit has been addressed by several authors. The problem was first examined
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by Kane and Mingori [48], before all but the earliest of the dual-spin studies

were published. They dealt with the specific case where the mass centers of the

asymmetric body and symmetric rotor coincide, and the rotor symmetry axis

is a principal axis of the platform. Longman and Roberson [67] considered the

simple gyrostat under more general assumptions and identified analytically all of

the relative equilibria. Roberson [88] then determined the stability of a subset of

these equilibria, and Longman [641 determined the stability of all the equilibria.

In [65], Longman considered the special case where the bifurcation changing the

number of equilibria results in an infinity of relative equilibria. In [66], Longman

et al generalized the stability regions (in a certain parameter space) of a rigid

body in a circular orbit to include the rigid gyrostat. An interesting example

of the type of nonlinear resonance that regularly occurs in spacecraft attitude

dynamics was analyzed by Crespo da Silva [19]. In this work, he made explicit

use of the equivalence property discussed here in Section 2.4.1.

Note that in all these studies the orbit was assumed to be circular. To date,

very little has been done with dual-spin spacecraft in elliptic orbits. However,

an interesting paper by Pascal [81] addressed the restricted three-body problem

where the third body is a gyrostat near one of the five libration points. She

identified the equilibria and determined their stability regions. Also, Mavraga-

nis [71] has identified 9 first integrals for the n-body problem where all n bodies

are gyrostats.

2.6 Rotor Asymmetry and Unbalance

One of the more interesting variations on the gyrostat model is that of asymmetry

of the rotor and/or or imbalance. In general, the immediate effect of such

changes is to destroy .. c constant inertia property of the gyrostat. A consequence

of this is that the new system is no longer completely integrable, and most of the

nice results discussed in Section 2.4 no longer hold. However, it is possible to
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reverse the roles of rotor and platform; hence the axisymmetric, balanced platform

with asymmetric and/or unbalanced rotor can be studied without giving up the

gyrostat's constant inertia tensor.

As with the early dual-spin stability investigations, the approach taken by

researchers has involved various approximation techniques such as linearization,

perturbation analysis and averaging, with varying degrees of success. We group

these studies into three categories: small-angle dynamics, large-angle dynamics,

and evidence for chaos.

2.6.1 Small-angle dynamics

Scher [91] examined the effects of bearing assembly flexibility on the stability of

the dual-spin condition. McIntyre and Gianelli [72] considered the wobble caused

by slight static and dynamic unbalance and obtained analytical expressions for the

resulting motion. They also gave a nice review of the state of the art of dynamic

balancing. Bainum et al [5] considered damping and flexibility in the rotor, for

an axisymmetric gyrostat with a planar pendulum damper. They reduced the

stability criterion to a single first order ordinary differential equation. Small-

aagle dynamics in the presence of rotor asymmetry or imbalance has also been

considered by Agrawal [2].

Similar studies have been conducted with an additional degree of freedom

added to the joint. These are discussed here in Section 2.7.

2.6.2 Large-angle dynamics

The earliest treatment of large-angle dynamics in the presence of rotor asymmetry

appears to be that of Scher and Farenkopf [92] in 1974. The system investigated

incorporated both dynamic imbalance of the platform and asymmetry of the ro-

tor. Based primarily on numerical results, the authors identified two trap states:

a minimum energy state corresponding to the eventual decay of the relative mo-
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tion when bearing friction torques exceed the motor torque, and a resonance trap

state when the motor has insufficient torque to achieve the dual-spin condition.

Their primary recommendation was to use a "sufficiently powerful motor," but

they also described a motor pulsing procedure that can result in escape from

either of the two traps.

The resonance trap was investigated further by Cochran [13] and Cochran

and Beaty [14], where the method of averaging was applied to the equations and

first integrals were obtained for the averaged equations. These authors showed

that asymmetry of the rotor and platform dynamic unbalance are necessary for

the resonance trap to occur. They also provided a relation for estimating the

required motor torque for a given system. Cochran et al [16] derived a closed

form solution for the balanced gyrostat and used this to explain how the loss of

symmetry leads to resonance.

Tsuchiya [96] also applied averaging to the equations for a spacecraft with

asymmetric rotor and platform, but no imbalance. He investigated the atti-

tude motion as the spacecraft passes through the "unstable region." Further, he

obtained criteria for the onset of resonance while passing through this region.

Because there is no platform unbalance, this is a different type of phenomenon

than that treated by Scher and Farrenkopf [921; thus it appears there are at least

three trap states associated with rotor asymmetry.

Adams [1] examined the dynamics of a dual-spinner in which motor failure

combined with bearing friction causes the platform to spin up. Besides the ob-

vious minimum energy trap state, he also identified a resonance trap he called

precessiun phase lock, or PPL. He conducted numerical investigations for several

sets of inertia parameters, and compared his results to on-orbit experience with

DSCS-II and TACSAT. He also showed that this type of PPL only occurs in

oblate dual-spin spacecraft.

Hollars [321 started with a general dual-spin model with both bodies asym-
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metric and unbalanced, then assumed the unbalance and one asymmetry were

"small." Essentially, he determined estimates for the bearing torques required

to avoid the resonance trap state, with specific application to the Jupiter orbiter

Galileo.

Lukich and Mingori [68] carried out a parametric analysis of the model used

by Tsuchiya [961. They applied Hill's infinite determinant method and Floquet

analysis to obtain stability diagrams in certain parameter planes. In the process

they showed that Tsuchiya's assumptions were severely restrictive.

Kinsey et al [50] investigated spinup with small constant torque of a dual-

spinner with axisymmetric bodies and dynamic imbalance of the rotor. Their

work focused on the precession phase lock problem, and the principal result was

a method for determining estimates for the cone angle caused by the rotor im-

balance. Numerical results were obtained to corroborate their estimates. A

similar model, with rotor asymmetry rather than imbalance, was investigated by

Yang [106]. Exploiting the three first integrals available in the zero axial torque

case, he obtained three first order differential equations for the Euler angles,

averaged them and determined stability criteria for motion near the dual-spin

condition. His results agreed with those of Tsuchiya [96].

Remark 5 The systems studied by Kinsey et al [50], and Yang [106] are, in

fact, gyrostats. Hence, some of the previous gyrostat results may be applicable.

Kinsey's constant torque assumption removes that problem from the two known

integrable cases, but a perturbation approach may result in an approximate closed

form solution to the equations of motion. However, since Yang used zero axial

torque, that system is completely integrable.

2.6.3 Rotor asymmetry as a route to chaos

The effects of rotor asymmetry have also been analyzed from another point of

view. Holmes and Marsden [33] have shown, using a simplified set of equations
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based on the gyrostat, that a slight asymmetry of the rotor induces Smale horse-

shoes in the flow, implying both nonintegrability and the presence of chaotic

motion. Koiller [51] has produced similar results using a full gyrostat model.

In both cases, a Melnikov function analysis was used to obtain the results (see

Guckenheimer and Holmes [26, pp. 184-204]).

2.7 Other Two-Coupled-Body Problems

In concluding this literature review, we point out some other, non-dual-spin,

two-coupled-body systems that have been studied.

Paquette [80] investigated controlling the motion of hinge-jointed attachments

to effect a decrease in the kinetic energy and stabilize a tumbling spacecraft. He

tested linear and nonlinear control laws derived using Lyapunov functions. (This

concept recalls the controlled spinup idea of Weissberg and Ninomiya [99].)

Cretcher and Mingori [21] added a degree of freedom and studied the motion

of an asymmetric platform connected by a gimbal-spring-dashpot to a slightly

statically unbalanced rotor. They showed how the extra dimension can diminish

the effects of the imbalance, while at the same time reducing the time constant

of the nutation damping. At about the same time, Wenglarz [1001 considered a

similar system and arrived at the same conclusions. Cronin and Kane [22] studied

a similar model in a circular orbit. They obtained the linearized equations of

motion and determined stability criteria for certain equilibrium motions.

Grossman et al [25] and Patrick [82] added yet another rotational degree of

freedom to the second body by considering a spherical, or ball-and-socket, joint

instead of a bearing joint. In [25], the equations of motion were derived in a

Hamiltonian form, with special attention paid to the Poisson structure of the

equations, while in [82], the bodies were assumed to be identical cylinders, and

the relative equilibria were then explicitly determined. In addition, a modified

Energy-Casimir method was used to determine stability criteria for the equilibria.



Chapter 3

Equations of Motion

Our analysis of gyrostat dynamics begins with a description of the model, includ-

ing derivation of the differential equations of motion. These equations turn out

to be similar to Euler's equations for the angular velocities or angular momenta

of a single rigid body, with one additional equation for the axial angular momen-

tum of the rotor, for a total of four first-order ordinary differential equations.

The equations are greatly simplified by changing to dimensionless variables, in

which the axial torque is represented by the parameter c. Three finite symmetry

transformations are then used to reduce the number of cases to be studied. The

existence of first integrals permits reduction of the number of equations in both

the unperturbed (e = 0) and the perturbed (c # 0) systems. For the unper-

turbed system, the reduction leads to a single elliptic integral. The perturbed

system is reduced from four differential equations to three equations which have

the advantage of being "almost" in the correct form for applying the method of

averaging.

3.1 The Model and Euler's Equations

The gyrostat model we consider in this thesis is shown in Fig. 3.1. The gyrostat

consists of two rigid bodies: a platform P, and a rotor 1, connected by a rigid

24



shaft with frictionless bearings. A spinup motor is available to provide a torque

to both bodies along the shaft. The mass of this motor may be part of either or

both of the two bodies. The entire gyrostat is free to rotate in space, but the

relative motion of the two bodies is constrained to rotation about the axis of the

shaft. The platform may be asymmetric; however, we require an axisymmetric

rotor, with the axis of symmetry coinciding with the axis of relative rotation.

We also assume the total gyrostat is asymmetric, or triaxial, that is to say, the

three principal moments of inertia of the gyrostat are distinct. Furthermore, we

assume the rotor's spin axis is aligned with or parallel to a principal axis of the

platform. It is clear that this axis is then also a principal axis of the gyrostat. in

Fig. 3.1, the spin axis is shown aligned with the principal axis el; however, the

equations of motion are not affected by moving the rotor axis away from el, as

long as the rotor axis and el are parallel.

Our derivation of the equations of motion for the axial gyrostat begins with

defining the angular velocities and angular momenta of the system. The body-

fixed principal axis frame F rotates relative to an inertial frame x/ with angular

velocity w, which may be written in body-fixed coordinates as w = (WI, w2, W3).

In addition, we need the angular velocity of 1Z relative to 7, denoted w. Thus

the absolute angular velocity of 1Z relative to Fi about its axis of symmetry is
Wl + WaS.

Similarly, the gyrostat's angular momentum vector is h which may be pro-

jected onto the principal axes as h = (h1 , h2, h3). Since there are no external

torques, the time derivative of this vector in an inertial frame is

while in the body-fixed frame

I] =-Wxh (3.2)
di tetn

In order to evaluate this equation, we need to express the angular momenta in
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h

el

55* 7/

e2 5

Figure 3. 1. Axial Gyrostat P + 1?: P is rigid platform; IZ is rigid axisymmetric
rotor; ei, i = 1, 2,3 axe principal axes of P + 1Z. The total angular momentum
vector h is constant in direction and magnitude. The angle between h and el
is the cone angle, 77. The reference frame Fi is an inertial frame, and Pp, is
a body-fixed reference frame aligned with the principal axes of the gyrostat,
rotating relative to ,.
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terms of the angular velocities and the moments of inertia. Thus

hi = Ilwi + Isw, (3.3)

h2 = I2W2 (3.4)

h3 = 13W3 (3.5)

where I1, 12, and 13 are the principal moments of inertia of P + IZ and I, is

the axial principal moment of inertia of 1?. Note that I1 "includes" I, and 12

and 13 include the transverse moments of inertia of T?. The total axial angular

momentum, hl, differs from the transverse momenta, h2 and h3, due to the

additional angular momentum of the rotor relative to the platform, h, = I;,w.

In addition to the principal momentum variables, we also use the total axial

angular momentum of R:

ha = I,(w1 + w8 ) (3.6)

In addition to the motor torque, there are torques between the two bodies that

are transverse to the rotor axis. These are not needed, however, to form the

equations of motion. The axial torque provided by the motor from the platform

to the rotor is denoted ga. Hence the time derivative of ha is given by

dh- ga (3.7)

Equations (3.3)-(3.6) can be solved for the angular velocities in terms of the

momenta, giving

hi - ha(3.8)

W2- =12 (3.9)

h3

W3 3 (3.10)
13'1

WS - 1 ('ha - (3.11)

which may then be used in Eq. (3.2) to obtain three differential equations for hl,

h2, and h3. Combined with Eq. (3.7), we have the following equations for the
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angular momenta:
dhl I2 -I3hh(.2Adt - 13I h2h3 (3.12)

A 1213

d 2  13-Ip hi L) h3  (3.13)

A 134 1 p
A3 I h, + h 2  (3.14)

di 12 '2p 'p
dh8d = - ga (3.15)

where

hl= Ilwl + Iws = angular momentum of P + 1? about el

hi= Iiwi = angular momentum of P + IZ about ej, i = 2,3

ha = I.(w, + Wi) = angular momentum of IZ about el

Ii = moment of inertia of P + RZ about ei, i = 1, 2,3

I, = moment of inertia of 1? about el

Ip = II - I, = moment of inertia of P about el

wi = angular velocity of P about ej, i = 1, 2, 3

w. = angular velocity of T? about el relative to P

77 = Cos-, (I L, )e, nutation or cone angle

9a = torque applied by P on IZ about el

e= = principal axes of P + IZ, i = 1, 2,3

t = time

Note that for ha = 0, Eqs. (3.12)-(3.14) are identical to Euler's equations for a

torque-free rigid body with moments of inertia Ip, h, and 13, while for ha = I'Wi

the equations correspond to a torque-free rigid body with moments of inertia II,

12, and 13. Of these two conditions, the former has practical application only in

the case of flat spin, while the latter applies to any axial gyrostat in the all-spun

condition (zero relative angular velocity, i.e., w. = 0).
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A more complete study of the dynamics of rigid body systems includes the

kinematic equations, usually given in terms of Euler angles. For our purposes,

the only Euler angle of interest is the nutation angle, 7 = cos- 1 (h . el/h), which

may be written more simply as

r7= cos - 1 (hi/h) (3.16)

The nutation angle is also known as the cone angle. Note that the well-known

Euler angle singularity occurs at 77 = 0, which is precisely the desired operating

condition for a dual-spin spacecraft. Thus a formal analysis of the kinematics

would necessitate a different choice of kinematical variables. However, for our

purposes, 7 is a useful measure of the deviation of a given motion from the

desired or nominal state.

Since there are no external moments, angular momentum is conserved and

the square of the magnitude of the angular momentum vector is a first integral

of the motion:

= hl+h2+h3=CONST (3.17)

This integral can be used to reduce the number of equations by one. Further-

more, if ga = 0, there are two additional first integrals: the rotor axial angular

momentum

h, = CONST (3.18)

and the rotational kinetic energy

2 = T + La = CONST (3.19)
21,

where

T = 1 (h_ ha )2 h2 + I23 (3.20)

Note that T is also constant since h, is constant. Since T is equivalent to, but

slightly simpler than T, it is usually used in applications. Using the three first
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integrals h2 , h., and T, Eqs. (3.12)-(3.15) may be reduced to a single elliptic

integral of the first kind, as shown, for example, in Ref. (161.

Since we are interested in the case where ga is a small constant, a natural

question is: What is the effect of ga # 0 on the constants of the motion? Using

Eqs. (3.12)-(3.15), it is easy to show that
dhadh - a (3.21)
dT g2
dT - a(ha(O) - hi) +a (3.22)
dt T, 4

and, since we have assumed zero external torque, h2 = CONS'I still holds. The

fact that the two "constants" have rates of change of 0(ga) was the original

motivation for our approach. Our perturbation analysis, based on the method of

averaging, will be valid to O(ga). Before proceeding, however, we simplify the

notation by changing to dimensionless variables.

3.2 The Dimensionless Equations

Our dimensionless equations are equivalent to those given by Guelman [28]; the

transformation is obtained by scaling the four momenta, time, and the axial

torque as follows:

XI = h1 /h a = ha/h

X2 = h2 /h t = hi/Ip (3.23)

X3 = h3/h C = galp/h 2

Derivatives with respect to t are denoted by an overdot: () - d(/dt. Further-

more, we define three dimensionless inertia parameters by

ii = 1- Ip/Ii, j = 1,2,3 (3.24)

Carrying out this change of variables leads to a new set of dimensionless equations:

l = (i 2 - i 3 )X 2 X 3  (3.25)

x2 = (i 3 x1 - A) X3 (3.26)
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x3 (i 2xI - #) X2 (3.27)

C =(3.28)

These equations are equivalent to Eqs. (3.12)-(3.15), but are simpler; in particu-

lax, there are only two inertia parameters rather than the original three. We note

that the angular momentum integral, Eq. (3.17), becomes
2+ 2+ 2 = (3.29)

1 + 2 ±3x 1 1

which defines a unit sphere in R3 , normally called the momentum sphere; the

dynamics on this sphere are discussed in detail in Section 4.2. Also, the cone

angle becomes

77 - COS - 1 XI (3.30)

For future reference, we also note that the dimensionless version of Eq. (3.20) is

-PT ((X1 _ '") 2 + (1 _ Z2)X2 + (1 - i3)X2) (3.31)

In Appendix B, we show that i 2 < 1 and i3 < 1, hence T defines a two-paxameter

family of ellipsoids in R , centered at (y, 0, 0). The intersections of this energy

ellipsoid with the momentum sphere defined by Eq. (3.29) are the integral curves

of the e = 0 system. These are discussed further in Chapter 4.

Like the first integrals and other quantities, the equilibrium points are also

easier to express in terms of the dimensionless variables, as discussed in the next

section.

Remark 6 In the nondimensionalization used here, we assume h 54 0. The h = 0

case is called the zero momentum gyrostat, which we discussed in Chapter 1. This

configuration has the same qualitative behavior as a single non-spinning rigid

body. Thus, since this case lacks the gyroscopic stabilization properties of the

spinning gyrostat, we do not discuss it further. However, with the exception of

Eq. (3.29), Eqs. (3.25)-(3.20) may be used to study the zero momentum gyrostat,

since in Eq. (3.23). we can take h = 1. Equation (3.29) becomes A +X 2 2 = 0,

which implies x, = X2 = X3 = 0, for all values ofc and ps.
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3.3 Equilibrium Points

The nature and number of equilibria of Eqs. (3.25)-(3.28) have been well docu-

mented. Here we obtain the values of the equilibria, and in Chapter 4 we discuss

stability and bifurcations of the equilibrium points. For ;' .iiore detailed dis-

cussion and a rigorous stability analysis, .e refer the reader to the paper by

Masaitis [70].

First, we note that when e = 0, there are no equilibrium points of all four of

Eqs. (3.25)-(3.28), since A = e is only zero when e = 0. However, if we consider

Eqs. (3.25)-(3.27) as a non-autonomous system with p' = po + et, then there are

two equilibrium points:

(xl,x2, x3) = (±1,0,0) (3.32)

where we have made use of conservation of angular momentum, Eq. (3.29). These

two equilibria are also present in the e = 0 case, but there are additional possi-

bilities.

From Eq. (3.25), it is evident that for equilibrium in the e = 0 case, either

X2 = 0 or X3 = 0. If x2 = 0, then x3 = 0 is automatic, and i2 = 0 requires

=(3.33)
z3

from which Eq. (3.29) gives

X3 = ±1- (/i 3 ) (3.34)

so that there are two "x2 = 0" equilibrium points.

Similarly, if x3 = 0, i2 = 0 automatically, and ;3 = 0 implies

x1 = A (3.35)i2

X2 = ±V1- (W /i2 )2  (3.36)

giving two "X3 = 0" equilibria.
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Thus there are six possible equilibrium points:

(xl,x2,x3) = (±1,0,0) Ve (3.37)

(Xl,X2,X3) = (6/ 3 O±1-(si) = 0 (3.38)

(Xl,X2,X3) = (l0 -(/i 2 ),O) C = 0 (3.39)

Since the xi are constrained to the unit momentum sphere by Eq. (3.29), it

is evident that the "X2 = 0" equilibrium points do not exist when JAI > i3 J, and

the "X3 = 0" equilibria do not exist when IpsI > 1i2 1. These bifurcation values of

1L depend on the inertia parameters i2 and i3 , which are the subject of the next

section. The bifurcations are examined in more detail in Chapter 4.

3.4 The Dimensionless Inertia Parameters

The three dimensionless inertia parameters defined by Eq. (3.24) retain the rel-

ative value relationships of the original moments of inertia, i.e.,

Ii > Ik 4 ij > ik, j,k = 1,2,3 (3.40)

In addition, the value of 1p relative to 12 and 13 determines the sign of i2 and i3,

respectively, i.e.,

Ip > Ik ik < 0, k = 2,3 (3.41)

Ip < Ik ik > 0, k = 2,3 (3.42)

We will use these facts throughout this section.

Now, of the three dimensionless inertia parameters, only i2 and i3 appear in

Eqs. (3.25)-(3.28). These parameters define the dynamical shape of the gyrostat,

and we adopt the following nomenclature to describe the possibilities:

oblate if i 3 < i 2 < 0.

A gyrostat is prolate if i2 > i 3 > 0.

intermediate if i2 > 0 > i 3 .
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in which we have made the tacit assumption i2 > i3 , which we justify below.

The other inertia parameter, il, simplifies to il = I/I1, the ratio of the axial

inertia of 1? to the axial inertia of P + 1?. Thus 0 < il < 1, with the limiting

cases il = 0 and il = 1 corresponding to gyrostats with rod-shaped rotor and

rod-shaped platform, respectively.

Since the definitions for oblate, prolate, and intermediate gyrostats do not

involve il, and the equations of motion are independent of il, one might reason-

ably ask: How does il = I/I1 affect the gyrostat's dynamics? The answer to

this question lies in defining the initial conditions for a particular spinup maneu-

ver. We discuss spinup maneuvers in detail in Section 4.5, but we give a brief

discussion here.

Typically, spinup begins with rotor and platform spinning as a single rigid

body with zero relative angular velocity (w. = 0). This condition may also be

described by IA = ilx1. This initial spin is usually about either the major or

minor axis of the total gyrostat, including the rotor. Applying the definitions for

the major, minor, and intermediate axes of a rigid body to the rotor axis of a

gyrostat results in the following definitions:

major axis if i1 > i 2 > i 3 .

The rotor axis is the minor axis if i2 > i3 > il.

t intermediate axis if i 2 > il > i 3 .

Thus a gyrostat with major axis el, i.e., il > i 2 > i 3 , may be either oblate,

prolate, or intermediate. All the possibilities are summarized in Table 3.1.

Another role for iI is in limiting physically possible values of i2 and i3 using the

triangle inequalities for moments of inertia (see Appendix B). We have already

noted that 0 < i1 < 1, and applying the inequalities to i 2 and i3 leads to the

conclusion that physically possible values of these parameters are restricted to a

specific region of the i2i 3 plane depending on the value of i1 as shown in Fig. 3.2.
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Table 3.1. Gyrostat Types

Basic Type Major Axis

Defined by i 1 >i2  ii <i2

Oblate i3 < i2 < 0 el -

Prolate 0 < i3 < i2  el e2

Intermediate i3 < 0 < i2  el e2

We assume i2 > i 3.

The boundary curves in Fig. 3.2 are given by:
(1 - 2il + iai2)/(i2 - il) (I)

23 = (2i2 - i 1 i 2 - 1)/(i2 - il) (II) (3.43)

(1 - ili2)/(2 - il - i 2 ) (III)

where the Roman numerals correspond to the labels in the figure. Note that

i2 and i 3 are both less than 1 for prolate gyrostats, while they are unbounded

for intermediate gyrostats. The boundary curve (I) limits i2 and i3 for oblate

gyrostats, and one may show that for ii = 1/2, this curve passes through the

origin. Thus for s4 > 1/2, a gyrostat is necessarily either prolate or intermediate.

The i1 i2i3 parameter space is discussed further in Appendix B.

3.5 Symmetries

One often encounters in the literature statements such as: "Without loss of gen-

erality we may assume A > B." Such claims usually refer to some underlying

symmetry of the system, and are often given without proof. We have, in fact,

made such an assumption (i 2 > i3) in the preceding section, and we make two

more symmetry assumptions throughout this work. In this section, we give three

finite symmetry transformations under which Eqs. (3.25)-(3.28) remain invari-

ant, and we identify the corresponding assumptions. These assumptions are then
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0 O i1
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-4

-4 -2 0

Figure 3.2. Admissible Regions in the i 2i3 Plane for il = 0.3. Valid values of i2

and i3 lie inside the three curves. The region extends to -oc in the i2 and i3
directions. These limiting regions correspond to the vanishing of one or the other
of the transverse inertias 12 and 13. The Roman numerals correspond to those in
Eq. (3.43).

used to reduce the number of cases which must be considered in the remainder

of the thesis. We also point out an apparently erroneous assumption previously

appearing in the literature on axial gyrostats.

Symmetry 1 Rotating the body-fixed principal axes through 900 about el leaves

the equations of motion unchanged. Mathematically the transformation is

(X2, X3, i2, 13) - (-X3, X2, Zi, i2) (3.44)
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This symmetry transformation is shown schematically in Fig. 3.3. The transfor-

mation allows us to assume i2 > i3 with no loss of generality.

h h
el e

e2

e3 j e

Figure 3.3. Transformation of Symmetry 1

Symmetry 2 Reflection across the e2e 3 plane, followed by a 900 rotation about

el and a simple change of inertia parameters leaves the equations of motion

unchanged.

(XlI, X2, X3, i2, i3) '- (--Xl1 X31 -X2, -i31 -i2) (3.45)

This transformation is shown schematically in Fig. 3.4. The transformation allows

us to map all prolate gyrostats (i 2 > i3 > 0) into equivalent oblate gyrostats

(i 3 < i 2 < 0), so we only consider the oblate and intermediate cases in this thesis.

Thus, when we use the term prolate, we will be referring to the equivalent prolate

gyrostat. Note that the cone angle is transformed by 7? itr - qj. This means

that the normal dual-spin condition is 7 = ir for prolate gyrostats transformed

by Symmetry 2.

In Chapter 4 we interpret this transformation in terms of the momentum

sphere. This symmetry appears to be a new result, and a paper describing it in

terms of the original variables has been accepted for publication (see Hall [301).
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e3 e3
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e2 el

Figure 3.4. Transformation of Symmetry 2

Symmetry 3 The equations of motion are invariant under a reversal of the

variables (x, y, t).

(XI Alt) - (-X, -A/,-t) (3.46)

This transformation means we only need to consider p >_ 0. We postpone a

graphical interpretation of this symmetry until Chapter 4, where its usefulness

will be clear.

Finally, we point out that in Leimanis's treatment of axial gyrostats [56,

p. 224], he assumes "without any loss of generality," that only prolate gyrostats

must be considered. As we have noted above, the distinction between prolate and

oblate gyrostats may be removed via Symmetry 2. It is possible this symmetry

was known to Leimanis, although he did not state it explicitly. However, there is

a significant difference between these gyrostats and the intermediate gyrostats,

as is made clear in Section 4.7.

3.6 Reduction of Order

In case there is no axial torque (e = 0), the system is completely integrable and

admits a closed form solution which we give in detail in Chapter 5. Even when

c : 0, conservation of angular momentum means we can reduce the number
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of equations from four to three. In this section we carry out these reductions,

beginning with the reduction to quadrature for e = 0. In Appendix E, we give

for comparison an example using a class of conservative, nonlinear second-order

oscillators, with a slowly varying parameter.

3.6.1 The e = 0 Quadrature

As discussed in the introduction to this chapter, for e = 0 there are three integrals

of the motion, namely, total angular momentum, axial angular momentum of the

rotor, and rotational kinetic energy. The kinetic energy integral is not, however,

the most convenient quantity to use, so we choose an equivalent constant which

is a functional combination of the three "standard" integrals. Rather than write

down the desired integral, we proceed formally, integrating Eqs. (3.25)-(3."8)

directly.

First, c = 0 implies p = CONST, giving the first integral:

cl = it = CONST (3.47)

Next, dividing i2 by il and integrating yields another first irtegral:

C2 = X1 - 23 2 = CONST (3.48)
13 23

Similarly, dividing i3 by x and integrating gives:
C3 = X2 + 22 - X2 _ 2 xl = CONST (3.49)

+ 2 22

These three first integrals are sufficient to reduce the system to a single quadra-

ture; however, we are ultimately interested in spinup and all three of these "con-

stants" depend on time when e 5 0. In particular, 1 = = e, and

2,-xl
c2 = (3.50)

i3
63 = -xl (3.51)

Of course, any functional combination of the three first integrals, Eqs. (3.47)-

(3.49), is also a first integral, and we use two simple linear combinations of C2 and
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C3, denoted Z2 and y. We choose the form of Z2 and y by insisting that c2 = 0,

and that i be "simple." From Eqs. (3.50) and (3.51) we find, for any e:

i3 2 - i263 = 0 (3.52)

and Eqs. (3.48) and (3.49) imply that

i3c2 - i2c3 = (i 3 - i2)(X 2 + + x ) (3.53)

Thus we may obtain the angular momentum integral, Eq. (3.29) as the following

combination of c2 and c3:

- i3C2 - i2C3

Z3 - i2
2 2 2 (3.54)

Now to choose y, we note that

i3c2 + i2653 = -4exI (3.55)

To this combination of c2 and C3, we add a constant and a multiplying factor

of 1/2, which simplifies Eqs. (3.58)-(3.61). Thus our energy-like constant, y, is

defined by

& 1
y = (i3c2 +i2c3 - 2- i3)

2
2{(i2 + i3)x1 -(i 2 - i3)(x -x) - 4px1- (i 2 + i3)} (3.56)2

aud for e 5 0 y satisfies

= -2exi (3.57)

Throughout this thesis we refer to y simply as the energy.

Using the constants A, y, and Z2 = 1, we express X2 and X3 in terms of xj, p,

and y, then eliminate X2 and X3 from Eq. (3.25). Thus,

2XAY -Y2(XI; 9) - Y
X2(X;Py) = - (3.58)i2 - i3

12 (XI;P, y) = Y- 3(xI; A) (3.59)
i2 - i3
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where
Y2(x;p) = i3XI - 2#xj - i3 (3.60)

y3(xt; 9) = i2X2-2uXl-i2 (3.61)

are quadratic functions of xl. Note that since i2 > i3 , and since X2 and X3 are

real, Eqs. (3.58) and (3.59) imply that

y3(X; 1A) <_ y :5 y2(x; A) (3.62)

hence admissible values of the energy y are bounded by these parabolas in the

xly plane. This observation is explored further in Chapter 4.

Then, substituting Eqs. (3.58) and (3.59) into (3.25) gives

ii = :2(x; A) - y /y - Y3(xl; 1) (3.63)

This equation is separable and may be written as

I -() ) = dt =t (3.64)

where is a dummy variable of integration, and to = 0 has been chosen without

loss of generality. The integral on the left hand side of Eq. (3.64) is an elliptic

integral of the first kind. In Chapter 5 we carry out the evaluation of this integral,

and its inversion in terms of Jacobi's elliptic functions. The ± in Eqs. (3.63)

and (3.64) indicates that xj oscillates as its derivative changes sign.

3.6.2 The E 34 0 Reduced Equations

In case c $ 0, neither 1A nor y is constant and the system is evidently non-

integrable. Angular momentum is still conserved however, and we use this to

reduce the number of equations from four to three. We already have j = - from

Eq. (3.28), and = -2ex from Eq. (3.57). Equation (3.63) for ij is still valid,

with the additional caveat that y and p depend on time, so that the equation

is no longer separable. These three equations for ii, ?, and are free of .r2

and x3. Having thus eliminated X2 and X3, from now on we drop the subscript
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on xj, except where needed for clarity. So we have reduced the four differential

equations (3.25)-(3.28) to three:

= = y2(XM)-Y y -y3(XA) (3.65)

= -2ex (3.66)

C $(3.67)

where y2(x, it) and y3(x, p) are defined by Eqs. (3.60) and (3.61).

We call Eqs. (3.65)-(3.67) the reduced equations. They are equivalent to

Eqs. (3.25)-(3.28), and are not restricted to small e or to c = CONST. Throughout

this work however, we will assume c to be a small positive constant, except where

otherwise noted.

The significance of Eqs. (3.65)-(3.67) is that they separate the motion into

the "fast" oscillations of x and the "slow" evolution of y and y, since and A are

both O(c). Note that integration of Eq. (3.67) gives /i = et plus a constant of

integration. Thus 14 may be regarded as the "slow" time. In Chapter 6 we show

that the slow flow of y vs. p captures most of the dynamics of the system.

3.7 Summary

In this chapter, we derived the differential equations for the angular momenta of

the axial gyrostat, and then non-dimensionalized these equations. We identified

three symmetry transformations that allow us to reduce the number of cases to

be studied. For the c = 0 case, three first integrals were obtained and used to

reduce the equations of motion to a single elliptic .Ategral. When c 5 0, we

showed that two of these first integrals are slowly varying quantities, and their

derivatives with respect to time are useful differential equations for the system.

In this way we reduced the number of equations from four to three. In addition,

we identified the equilibrium points of the equations, for both the e = 0 and

c 9 0 cases. These will be discussed further in the following chapter.



Chapter 4

Graphical Representations of Spinup

Dynamics

There are several ways to graphically depict the dynamics of gyrostats. In this

chapter we present several graphical tools for representing the dynamics for both

the unperturbed and perturbed systems. The purpose of this chapter is two-fold:

(1) we introduce several illustrative examples which are referred to later in the

thesis, and (2) we develop several conventions for depicting spinup dynamics. In

particular, we show how spinup, described by four first-order differential equa-

tions, can be represented approximately by flow in the py plane, where y and y

are the slow state variables. This representation also makes clear the effect of

the size of the torque on the resulting motion of the gyrostat. We exploit this

observation to discuss a resonance capture problem similar to one which has been

previously discussed in the literature. Our approach identifies the location of the

resonance in phase space and the qualitative effects of the resonance.

In this chapter, we also characterize the four different types of spinup trajec-

tories which are of practical interest. Throughout this chapter, we use "exact"

solutions to the original equations, (3.25)-(3.28), as represented by numerical in-

tegration. In subsequent chapters, we compare the observations made here with

43



44

the averaging results.

We begin by discussing oblate gyrostat dynamics in detail, then summarize

the equivalent results for intermediate gyrostats.

4.1 Simple Representations

Given solutions to Eqs. (3.25)-(3.28), an obvious possibility would be to plot the

xi and y as functions of time, as shown in Fig. 4.1. It is clear from this figure that

the angular momenta are periodic when e = 0, and that something interesting

happens when e 3 0. However, for c # 0, it is difficult to draw conclusions about

solutions in general using such plots.

(a) (b)

0.5 0.5

0 0

-0.5 -0.5

-1 , -1 -

0 20 40 60 80 0 20 40 60 80

Figure 4.1. Angular Momenta vs. Time. (a) e = 0. (b) c = 0.01. In both plots,
(i 2, i3) = (-0.3, -0.7).

Note that the p vs. t curve is trivial in both plots in Fig. 4.1, as expected,

since ji = c. This suggests the possibility of ignoring p and looking at the flow

in the XIX2 and X3X2 planes. Of course, other combinations are equivalent. The

trajectories of Fig. 4.1 are shown in these phase planes in Fig. 4.2.
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(a) X2 (b)

0.5 0.5

0 0

-0.5 -0.5

-1 -1..I. . . . ,x

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5

(c) (d)
X2 X

0.5 0.5

o0

-0.5 -0.5

-1 -1I " L i I IXi' ' ' ' I Xe

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5

Figure 4.2. Angular Momentum Phase Planes. The flow of Fig. 4.1 is projected
onto the X1X2 and X3X2 phase planes. (a) x2 vs. xl with c = 0. (b) x2 vs. X3 with

= 0. (C) X2 vs. x1 with e = 0.01. (d) X2 VS. X3 with c = 0.01.
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4.2 The Momentum Sphere

An elegant approach that works well for the e = 0 system is to exploit the first

integrals of energy and angular momentum. This allows one to consider the

flow as constant energy curves on the angular momentum sphere. As we noted in

Section 3.2, these curves may be interpreted as the intersections of the momentum

sphere with the energy ellipsoids.

As was shown in the previous chapter, when c = 0 the motion is essentially

one-dimensional, with x(t) = xl(t) being the variable of choice. Since the motion

is confined to the surface of the momentum sphere, trajectories are simply one-

dimensional curves on the sphere, which are called polhodes in analogy with simple

rigid body dynamics. The topology of the phase space on the sphere depends on

the constant value of i. In particular, there are either two, four, or six equilibrium

points on the sphere, as given by Eqs. (3.37)-(3.39) in Section 3.3. The three

possibilities are shown in the three spheres in Fig. 4.3. For fixed )U, there is a

range of possible y values, limited by Eq. (3.62), with each polhode corresponding

to a particular value of y. As shown in Fig. 4.3, some values of y correspond to

fixed points on the sphere; these are the equilibrium points of Eqs. (3.25)-(3.28)

with c = 0, and correspond to particular steady state motions. Specifically,

the point at the north pole of the sphere, (x1, x2, x3) = (1, 0, 0), is the point at

which an oblate dual-spinner typically operates. The notation O denotes this

equilibrium point, with the 0 suggesting oblate, and the subscript js indicating

that the dynamics depend on the value of p. For example, O1 denotes the

equilibrium point at the north pole of the momentum sphere for IL = 1. Similarly

the equilibrium at the south pole is associated with the operating condition of a

prolate gyrostat, hence the notation P.. Note that 0 and P. are equilibrium

solutions for any c, as we showed in Section 3.3.

The saddle points correspond roughly to unstable flat spin motions, and the

notation U. is used to indicate these unstable equilibria. Note that these equi-
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C = 0.4X3

X1

ii = 0.8

24 
X3

P-

Figure 4.3. Momentum Spheres for Oblate Gyrostats (i2 ,i 3 ) = (-0.3, -0.7),
A E {0.1, 0.4, 0.8}. Each sphere corresponds to a fixed value of It. Constant
energy curves on the sphere correspond to y = CONST. The "cartoons" in the
right half of the figure are topologically equivalent to the spheres "minus" the
point at the north pole.
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libria do not exist in the lower two spheres in Fig. 4.3. At u = -i2, the two

saddles U, coalesce with the center P, at the south pole, creating a saddle at

the south pole. This bifurcation value of p is denoted 02. This is an example of

a pitchfork bifurcation [26, pp. 149-150], and is part of the reason that prolate

gyrostats have more interesting dynamics than oblate gyrostats.

The equilibria in the "eyes" of the saddle connections correspond to stable

flat spin. The notation Fp is used for these equilibrium points. At Y = -i 3 , these

centers coalesce with the saddle at the south pole in another pitchfork bifurcation,

creating a center there. We denote this bifurcation value of P by P3.

In summary, fixing the rotor angular momentum y determines the topology of

the polhodes on the momentum sphere, and fixing the energy y determines which

polhode a particular motion is on. For 0 < p < P2 all six equilibrium points

exist; for A2 < A < Y3 there are four equilibria; and for a > 03 there are only

two equilibria, both centers. Pitchfork bifurcations occur at the south pole for

Y = /2 and A = A3. The two pitchfork bifurcations are represented schematically

in Fig. 4.4. The bifurcation values of # are given in Table 4.1, and the equilibria

are given in Table 4.2.

Table 4.1. Bifurcation Values of p for Oblate Gyrostats

it Bifurcation
A

A2 = - i2 > 0 Pitchfork bifurcation: the flat spin saddles U.

coalesce with the center at the south pole P,

creating a saddle at the south pole.
A

P3 = - i3 > 0 Pitchfork bifurcation: the flat spin centers F,

coalesce with the saddle at the south pole P.

creating a center at the south pole.
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Remark 7 We have stated the stability types (center or saddle) for the equilib-

rium points without giving any proof of these properties. The stability of these

equilibrium points is well-known, and is proved for example in Refs. [38] and [70].

Figure 4.4. Schematic of the Two Pitchfork Bifurcations. The horizontal axis
illustrates the changing nature of the equilibrium point at the south pole of the
momentum sphere (P.) as p increases. Where the horizontal line is dashed, P,
is a saddle, and where it is solid, P, is a center. The first bifurcation occurs
at A = A2 when the two saddles on the sphere (U.) collide with the center P.,
changing PI to a saddle. When p = A3, the two centers FA collide with the saddle

P, changing P, back to a center.

Table 4.2. Equilibrium Points for Oblate Gyrostats

Equilibrium x Range of p Energy (y)

for center for saddle

O. +1 [0,oo) - -2p

P-1 [,2) (t2, p3) +2p

(A3, 00)

FM. p/i3 [0, M) - p2/P3 + P3

U,. p/i2 - (0, P2) p2 /P2 + P2

The values Of X2 and X3 are given at Eqs. (3.37)-(3.39).
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4.3 The xy Plane

Recalling our convention that x = x(t) = xi(t), we now introduce the xy plane

which is equivalent to the momentum sphere. Using Eqs. (3.60) and (3.61) we

have plotted Y2 = y2(x; p) and Y3 = y3(x; 9) in the left half of Fig. 4.5 using the

same values of u, i2 , and i3 as for the spheres in Fig. 4.3. In the right half of the

figure we have reproduced the topological cartoons of the momentum spheres.

Recall that y3 _< Y _5 Y2, so the motion is confined to the closed region between

the two parabolas. It is easy to verify that the parabolas intersect at x = ±1,

with y2(+l; A) = y3(+l; 9) = -2p, and 2(-l;P) = y3(-l; 9) = +2p. This is

expected since x = ±1 are equilibrium points (O, and P.) for all y, and these

intersections correspond to those equilibria. This also implies that the energy at

O, is - 2p, while the energy at P. is +2y. That is, the energy at the poles varies

linearly with the rotor angular momentum.

One can also readily see that the extrema of the two parabolas axe:

y2(P/i3; i) = - (J21i3 + i3 ) = A 2 /3 + A3 (4.1)

y3(Ali2; P) = - (, 2 1i 2 + Z2) = A2/A2 + P,2 (4.2)

The maximum of Y2 corresponds to the two centers F, while the maximum of

Y3 corresponds to the two saddles U.. These facts are easily verified by substi-

tuting the equilibrium values of x from Table 4.2 into Eqs. (3.60) and (3.61).

The dashed line passing through the maximum of y3 for p < P2 in Fig. 4.5(a)

represents the separatrices of the two saddles U,. The dashed line y = 211 for

P22 < As < JL3 in Fig. 4.5(b) represents the separatrices of the saddle P,. Note

from Eqs. (4.1) and (4.2) that the energy at the centers, F. and the saddles, U,

varies quadratically with the rotor angular momentum.

In analogy with the momentum spheres, fixing it determines the bounding

curves Y2 and Y3, giving a specific admissible region in the xy plane, and fixing y

gives a particular one-dimensional path which x(t) must follow, i.e., the straight
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Figure 4.5. The xy Planes for Oblate Gyrostats (i 2 ,i 3) = (-0.3,-0.7),
p E {0.1, 0.4, 0.8}. Each plane corresponds to a fixed value of It. The "cartoons"
relate these figures to the momentum spheres in Fig. 4.3. Constant energy curves
on the sphere correspond to y = CONST.
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line y = CONST, with x(t) oscillating between the bounding curves.

4.4 The My Plane

When e # 0 the dynamics on the momentum sphere become more complicated.

In this section we present the alternative of viewing spinup dynamics in the py

plane. First we discuss the differences between the unpertubed and perturbed

systems.

To begin, when F# 0, the flat spin (F,) and saddle (Um) equilibria are no

longer fixed points of the governing equations. As discussed in Section 3.3, there

are only two equilibria when e # 0, namely Op and Pi,. There are also no longer

any polhodes, and even when P. is a saddle point, it no longer has a separatrix.

In fact P. does not even possess stable and unstable manifolds since P, changes

to a center after a finite time (forward or backward). However, trajectories may

pass arbitrarily close to the saddle point. As there is no standard term for such

trajectories, we will use pseudo-stable manifold to refer to the set of trajectories

which pass close to the saddle point. See Fig. 7.6 for an example of such a

trajectory.

Now, having announced that all of the nice features of the e = 0 system are

destroyed by the spinup perturbation which changes the axial angular momentum

of the rotor, pi, we reclaim these features by adding the adjective "instantaneous"

to each term, and associating the "frozen" features with a corresponding value of

it. This view, which is fundamental to the perturbation approach which we take,

is expected to be useful if the rotor momentum varies slowly, i.e., if e < 1. Thus,

the flat spin centers become instantaneous flat spin centers, the e = 0 polhodes

become instantaneous polhodes, and so forth. These solutions to the unperturbed

system are not solutions for c : 0. However, they define non-invariant surfaces

in the e # 0 flow that are important to the perturbation method we use.

Of particular interest are the instantaneous separatrices of the saddle points.
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In the unperturbed system, the separatrices truly separate different kinds of mo-

tion, since they cannot be crossed by trajectories. In the perturbed system,

however, the instantaneous separatrices can be crossed, and it is precisely the

separatrix crossings that introduce errors in our averaging results.

In order to view spinup dynamics, one could easily generate a sequence of

instantaneous momentum spheres valid for fixed values of P, and thereby possibly

deduce the qualitative nature of the flow. However, as we have shown, the xy

plane is equivalent to the momentum sphere, and has the advantage of being a

two-dimensional object rather than a three-dimensional one. Thus, we create a

sequence of xy planes for fixed values of p, thereby obtaining a three-dimensional

phase space for the flow. Furthermore, since x is a fast variable and y and p

are slow variables, the projection of the flow onto the /y plane can be justified

by the method of averaging, yielding a two-dimensional state space, valid in the

1imit as E -- 0.

Our approach, then, is to construct a sequence of xy planes for increasing pi,

then project the critical points of the instantaneous Y2 and y3 curves onto the

uy plane. This is done in Fig. 4.6. Another view of the 1uy plane is given in

Fig. 4.7. The solid curves in the My plane represent the instantaneous centers

on the momentum sphere, while the dashed curves represent the instantaneous

saddles and their separatrices. Note that the py plane is symmetric about p = 0,

because of the symmetry (x, y, t) * (-x,-9,-t), so we only need to consider

u > 0. Also, for p > A3, there are no additional bifurcations: the momentum

ipheres, the xy planes, and the My plane remain qualitatively the same.

We can now make a general assertion about the flow in the py plane when

= CONST > 0: Trajectories are confined to a "wedge" originating at the initial

condition p(O) = po, y(O) = yo, with edges parallel to 0,. and P., as depicted in

Fig. 4.8. The proof is easy. We have y = -2ex, and i = e, from which

dy -y -2x 
(4.3)

dp
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Po °I

PP 1

PU 2 01 0

Figure 4.6. The xluy Phase Space and the ty Plane for Oblate Gyrostats. The
xpy plot shows the phase space for all spinup problems for these values of i2
and ij. By pro iecting the critical points of the parabolas onto the jsy plane,
we represent the changing structure of the momentum sphere's phase portrait
during spinup. The solid line QO00 represents the centers Or in Fig. 4.3. The
line PoP 1 represents the equilibrium point at the south pole of the momentum
sphere (cf. P, in Fig. 4.3); the solid segments PoP, 2 and P, 3P1 denote the region

where the equilibrium is a center, while the dashed segment Po2 P 3 shows where
the equilibrium is a saddle. The dashed curve UoP 2 represents the locus of
saddle pairs (cf. U in Fig. 4.3), while the solid curve FoP 3 represents the locus
of center pairs (cf. F in Fig. 4.3).
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Figure 4.7. The py Plane for Oblate Gyrostats. The solid line O. represents the
centers at the north pole in Fig. 4.3. The line P. represents the equilibrium point
at the south pole of the momentum sphere (cf. P. in Fig. 4.3); the solid segments
denote the region where the equilibrium is a center, while the dashed segment
Po, P, 3 shows where the equilibrium is a saddle. The dashed curve U,, represents
the locus of saddle pairs (cf. U , in Fig. 4.3), while the solid curve F. represents
the locus of center pairs (cf. F,, in Fig. 4.3). Note that this figure also applies to
prolate gyrostats, by the equivalence transformation of Eq. (3.45). The py plane
for intermediate gyrostats is different however (cf. Fig. 4.20).
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Now, since lxi < 1, we have

- I< 2 (4.4)

which completes the proof. While this is a very conservative bound for most

trajectories, it allows us to state with certainty that for all initial conditions with

y < 21, ji > 0, the spinup trajectory does not cross any instantaneous separatrix.

Y
2 1

.0

0 Possible -

-1

-2

0 0.2 0.4 0.6 0.8

Figure 4.8. Bounds on Spinup Trajectories.

Incidentally, the liy plane is useful not only as the slow state space, but also

as a bifurcation diagram for investigating all possible e = 0 dynamics. For e = 0,

a given point in the My plane corresponds to a specific polhode (y -- CONST) on a

specific momentum sphere (It = CONST). The missing information is the phase.

or location of a point on the polhode, which is determined by x = xl.
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By way of contrast, we have included the pt plane as Fig. 4.9, obtained by

using the dimensionless rotational kinetic energy, given at Eq. (3.31). Note that

the straight lines of the py plane become parabolas in the pT plane. This is

another reason why we chose y as a phase variable instead of T (cf. discussion on

pp. 39-40).

2 pIA

1.5P.

0.5

0 1 . 0 1 . .

0 0.2 0.4 0.6 0.8 1

Figure 4.9. The pt Plane. Compare with Fig. 4.7.

4.5 Spinup Problems

In this section we define severaJ classes of spinup trajectories which may occur

for real spacecraft.

A spinup maneuver for a dual-spinner typically begins with the spacecraft

operating near a "stable" equilibrium point, i.e., near O, P., or F., depend-

ing on the type of spacecraft. Thus there are three basic spinup problems for

oblate spacecraft. The initial condition also usually corresponds to an "all-spun"

condition, with rotor and platform spinning as a single rigid body with no rel-

ative rotation (w = 0). The small constant torque e is then used to change

the rotor angular momentum i to the desired operating value, typically near
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I = 1, after which the motor is turned off. An energy dissipation mechanism is

then employed to reduce the final cone angle to zero by damping the transverse

momentum (x2 = X3 = 0).

Before proceeding, a brief discussion of the all-spun condition is needed. As

noted above, all-spun means w, = 0. This is a special case of Lo. = CONST,

so let us treat the more general condition. Recalling Eq. (3.11), we have W. =

(Ilha/Is - hl)/Ip; hence &s = 0 implies ha = IshI/II, or, in dimensionless

variables,

=i12 - i3)X2X3 - as (4.5)

Thus, the w, = CONST condition requires a specific axial torque, ea, which in

general is neither zero nor constant. For the special case of w, = 0, we obtain

from Eq. (3.11), ha = IhlIh, or, in dimensionless form,

A = ilXl (4.6)

The point of this discussion is that, since Ca, # 0, the all-spun initial state does

not correspond to a single point in the jiy plane. In fact, the all-spun state defines

a family of periodic orbits, depending on how close the all-spun motion is to an

equilibrium point of the equations of motion for a single rigid body.

To see this, recall that the all-spun condition is equivalent to the torque-free

motion of a rigid body with the same inertia properties as the gyrostat. This

well-known problem also has a solution for the angular momentum variables in

terms of elliptic functions (cf. Hughes [38]), hence x, is a periodic function of

t, with the amplitude determined by the value of the rotational kinetic energy.

Now, since dy/dp = -2xi, we can use Eq. (4.6) to write

dy (4.7)

which we can integrate easily to obtain

Y(A) = Y(,1)- -- (# _ 2) (4.8)
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Therefore, the all-spun trajectories in the py plane are segments of parabolas,

with ja oscillating between limits defined by the limits of the oscillation of xl,

and by Eq. (4.6).

Another important detail is the motor "cutoff" time, which we have stated

usually occurs near p = 1. Two examples will serve to illustrate the nature of

the cutoff condition, and to justify our choice of p = 1. Typically, a mission has

a specific target value for the angular velocity of the platform about the rotor

axis, determined by the relationship between the mission orbit and the object

the platform is supposed to track. As a limiting case, one might wish to point

the platform at the fixed stars, which requires wl = 0. With zero transverse

angular momentum, Eq. (3.8) then implies that h = ha, or p =_ 1. Another, more

common case is an earth-pointing platform. For a geostationary communications

satellite, this implies wi = 2ir rad/day, or Wl - 7.3 x 10- 5 rad/s. Hence the

cutoff value of p is

p =1 - (7.3 x 10-5)- (4.9)

Thus, assuming a reasonably high rate of spin (h > Ip, say), y ; 1 still defines a

good cutoff time for theoretical investigations.

Motor cutoff time has also been discussed by other authors, but apparently

none have noted the simple relationship given here. For example, Hubert [37]

defined the cutoff time as the time after which there are only two equilibria on

the sphere, i.e., p = A3. While this is an important bifurcation point, it is not

directly relevant to achieving a desired attitude of the platform. Gebman and

Mingori [23] defined the cutoff time for fiat spin recovery as the time at which

Wl passes through zero. From Eqs. (3.8), (3.23), and (3.45), we find that their

criterion is equivalent to xi = -p. Looking ahead to Fig. 4.13(b), we see that

x, = -p intersects the flat spin recovery trajectories several times before U = 1.

However, they were investigating spinup for ipitial conditions exactly at flat spin,

and in this case, with very small torques, their criterion is adequate.



60

We now proceed to the definition of the three kinds of spinup problems for

oblate gyrostats, keeping in mind that prolate gyrost ats are included by virtue of

Symmetry 2. We call the three spinup problems Oblate Spinup (OSU), Prolate

Spinup (PSU), and Flat Spin Recovery (FSR). In Figs. 4.10-4.13, the flow for

all three problems is shown projected onto the yx and py planes, obtained by

numerically integrating Eqs. (3.25)-(3.28). We also show the cone angle as 77 vs.

It. The three spinup problems are discussed separately below.

4.5.1 Oblate spinup

From Table 3.1, we know that for all oblate spacecraft, the spin axis is also the

major axis. Thus, prior to the spinup maneuver, an oblate spacecraft would

typically be spinning about the rotor axis, near the equilibrium at the north pole

(O). We call the ensuing motion oblate spinup (OSU). If in the all-spun state,

then x ; 1, p ; il, and y - -2il. As may be seen in Fig. 4.10, the oblate

spinup trajectories in the ty plane are very nearly straight lines, and they do not

cross either of the dashed lines representing the instantaneous separatrix energy

levels. (Recall that in Fig. 4.8 we showed that they cannot cross the separatrices.)

In the px plane, the motion is an oscillation with slowly decreasing amplitude

and slowly increasing frequency, while the cone angle, shown in the 1t'j plane,

oscillates about a nearly constant value.

It is also possible that the initial condition could be near a flat spin state

about the minor axis, i.e., near Fp with p = 0. This case is treated as flat spin

recovery below.

4.5.2 Prolate spinup

Spinup of prolate gyrostats presents three possibilities depending on the inertia

properties and the initial conditions. First, the rotor axis of a prolate gyrostat

may be either the major, minor, or intermediate axis of the gyrostat. Also, the
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Figure 4. 10. Oblate Spinup (i*2 ,i23 ) = (-0.3, -0.7). Three different initial condi-
tions are shown in each plot. (a) Projection onto the py plane. (b) Projection
onto the itx plane. (c) The cone angle, 17, in degrees.
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gyrostat may initially be spinning about either its major axis or its minor axis.

The three possibilities are:

1. The gyrostat is spinning about the rotor axis, and the rotor axis is the

gyrostat's minor axis (ii < -i 2).

2. The gyrostat is spinning about the rotor axis, and the rotor axis is the

gyrostat's major axis (ii > -i 2).

3. The gyrostat is spinning about a transverse axis, which may be either the

major or minor axis.

These three possibilities axe shown in Fig. 4.11. The second case is similar to

oblate spinup, and we do not discuss it any further. The third case is known as

flat spin recovery and is treated below. For the rest of this subsection, we focus

on the first possibility.

Y
2 -1 . . . '''I'

1 3. Fat spin. -

-1

-2
0 0.2 0.4 0.6 0.8

Figure 4.11. Three Possible Initial Conditions for Prolate Gyrostats
(i2 , i3) = (-0.3, -0.7). These are ideal initial conditions, starting exactly at
the equilibrium points 3f the all-spun system. Actual initial conditions would be
on a polhode near one of the equilibrium points. Cf. discussion on page 58.
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Prolate spinup (PSU) starts near the south pole, or Pp, with x ; -1, P ; il,

and y i 2i1 . Referring to Figs. 4.11 and Fig. 4.5, the initial condition is near

the point P, with 0 < y < A2. This means that actual trajectories will begin

slightly above the line P, in Fig. 4.11.

Unlike the oblate case, however, the y vs. p trajectories are not nearly straight

lines. Near i = P12, the trajectories encounter the first instantaneous separatrix

crossing, then almost immediately cross another separatrix. These crossings ac-

count for the sharp bend in the paths shown in Fig. 4.12.

4.5.3 Flat spin recovery

The final spinup possibility of practical interest is the flat spin recovery (FSR),

which begins with the vehicle in a flat spin about a transverse axis, with x ; 0,

X3 ; ±1, I - 0, and y ; -i 3 . Note that this is the problem that was investigated

in Ref. [23], for the specific initial condition x3 = 1, p = 0. As shown in Fig. 4.13,

the trajectory "follows" the locus of F, equilibria, then crosses the dashed line

which represents the locus of saddles at the south pole and their instantaneous

separatrices.

It is also possible to have trajectories starting near one of the unstable equi-

libria. These trajectories are of limited practical interest and are not considered

here.

4.5.4 The Effects of Torque Magnitude

In ,riis section we investigate the effects of the order of magnitude of e on the

nutation or cone angle at the conclusion of spinup. The final values of y and p

for a particular trajectory may be used directly to compute an average residual

nutation angle as is shown in Chapter 6. The closer the final point is to P, (for

prolate gyrostats) or O. (for oblate gyrostats), the smaller the cone angle. Note

that in Fig. 4.12, the final cone angle for prolate spinup is greater than for flat spin
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Figure 4.12. Prolate Spinup (i2 ,i) =- (-0.3, -0.7). (a) Projection onto the py
plane. (b) Projection onto the px plane. (c) The cotle angle. Recall that for
prolate gyrostats transformed by Symmetry 2, the nominal cone angle is 71 = 7r.
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Figure 4.13. Flat Spin Recovery (i2, i3 ) (-0.3, -0. 7). (a) Projection onto the
j'y plane. (b) Projection onto the px plane. (c) The cone angle.
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recovery in Fig. 4.13. This brings up an important difference between these two

types of trajectories. For flat spin recovery, making the torque smaller decreases

the residual cone angle, whereas for prolate spinup smaller torque increases the

cone angle. Therefore, for flat spin recovery, our small torque assumption is

relevant in a practical sense. For prolate spinup, however, one would expect a

large torque to be used to obtain a smaller final cone angle. The differences are

shown in Fig. 4.14

With this in mind, we focus on flat spin recovery for most of this work.

However, we do develop and compare the averaged equations for prolate and

oblate spinup as well.

4.5.5 The Effects of Initial Phase

Ultimately, we will average over the fast dynamics and focus entirely on the flow

in the py plane. The degree of success of this strategy will be determined by

the importance of the effects being ignored, and in this section we examine those

effects.

Recall that a point in the py plane corresponds to a specific polhode on

a specific momentum sphere, but does not identify any particular point on the

polhode. If every point on a given initial polhode maps to the same final polhode,

then we may ignore the phase with no error, since the quantity of interest, the

final average cone angle, depends only on the final polhode and not on the final

phase. More realistically, if an initial polhode maps to a bounded set of final

polhodes, then we may ignore the phase with the error dependent on the size of

the bounded set of final polhodes.

The phase is found to be less important for trajectories which do not cross an

instantaneous separatrix. Those trajectories that do cross a separatrix experience

a dispersion, so that an initial polhode maps to a large set of final polhodes.

Thus oblate spinup is essent:alUy independent of the initial phase, while both
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Figure 4.14. Effect of Torque Magnitude on Cone Angle (i 2 , i3) = (-0.3, -0.7).
(a) Flat spin recovery in the /py plane. Initial conditions are (Xl, x2, X3,P)

= (0.31,0,0.95,0). (b) Prolate spinup in the py plane. Initial conditions are

(xl,x2,X3,A) = (-0.90,0,0.436,0). (c) Cone angle for flat spin recovery. (d)
Cone angle for prolate spinup.
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prolate spinup and flat spin recovery experience phase-dependent dispersion when

crossing the separatrix. This is shown for flat spin recovery in Fig. 4.15. For

prolate spinup the effect is similar.

We note also that a small change in - has a similar effect to changes in initial

phase, since it effects the time (hence the phase) at which the trajectory crosses

the separatrix.

4.6 Application to Resonance Capture

As discussed in Section 2.6, asymmetry and unbalance of the rotor may induce

resonances that interfere with the spinup process. One particular instance of such

a resonance is precession phase lock, which was investigated by Kinsey et al [50].

In this section we use the py plane to investigate resonance capture for a similar

spinup problem. We also take this opportunity to demonstrate the use of the

prolate-to-oblate symmetry transformation.

The model investigated by Kinsey et al [50] consists of a slightly unbalanced

rotor connected to an axisymmetric, balanced platform. Since the plat-

form is balanced and axisymmetric, this model is also a gyrostat, although it does

not possess the same symmetries as the axial gyrostats considered in this thesis.

A similar system, exhibiting the same capture phenomenon as precession phase

lock, is an axial gyrostat with a slightly asymmetric but balanced rotor and

an axisymmetric, balanced platform. That is, we replace the unbalance of

the rotor with an asymmetry. To explain this difference, we compare the moment

of inertia matrices for the two models, expressed in a body-fixed frame with the

1-axis aligned with the rotor.

Kinsey gyrostat Axial gyrostat

1 112 0 11 0 0

I= 112 Il 0 I= 0 12 0

0 0 13 0 0 13
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Figure 4.15. Effect of Initial Phase Difference for Flat Spin Recovery, with
(i 2, i3 ) = (-0.3, -0.7), e = 0.001. (a) The initial polhode projected onto X1X2

plane. (b) The final polhodes projected onto x3x2 plane. (c) The flow in the piy
plane. Note that the two trajectories are difficult to distinguish in the yy plane.
because trajectory (2) is very close to the straight line y = 2v (Pp). (d) The cone
angle.



70

Note that diagonalizing the Kinsey model inertia matrix will not result in an

axial gyrostat, since the new 1-axis will not coincide with the axis of the rotor.

Now, the difference between the proposed model and the axial gyrostats we

have been discussing is simply one of nomenclature: our gyrostats consist of

balanced, asymmetric platforms with balanced, axisymmetric rotors. Switch the

terms rotor and platform, and the two types of gyrostats are identical. However,

since the goal in the proposed model is to despin the axisymmetric platform, this

translates into despinning the rotor in our system.

In this case, we may use the equations and graphical tools developed here.

We simply take the axial torque to be a small negative constant, and despin the

rotor instead of the platform.

For a slightly asymmetric platform, i2 = i 3 + 61, where el is the small positive

asymmetry parameter. For definiteness, we consider a system with (i1 , i 2 , i3 ) =

(0.7, 0.6, 0.5). The py plane for this system is shown in Fig. 4.16(a).

The gyrostat under consideration is a prolate gyrostat with the rotor axis as

the major axis. Using Symmetry 2, we can transform this to an equivalent oblate

gyrostat with (il,i 2 , i 3 ) = (0.7,-0.5,-0.6), and consider the equilibrium at the

south pole of the momentum sphere. Since the south pole corresponds to the P.

line in the My plane, we only need to look closely at the upper half of the My

plane, which is shown in Fig. 4.16(b).

Now, the initial condition for the equivalent oblate gyrostat in the all-spun

condition is close to the equilibrium point (x1,x2,x 3 ) = (-1,0,0), with P =

-i 1 X1 , which is indicated in Fig. 4.16(b). Note that since il > li3[, this equi-

librium point corresponds to a point in the My plane where there are only tuio

equilibrium points on the momentum sphere; however, since the all-spun sys-

tem rotates as a single rigid body, there are in fact siz equilibria on the sphere.

This apparent discrepancy is explained in Section 4.5 (cf. discussion following

Eq. (4.5)).
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Figuxe 4.16. The py Plane fox a Prolate Gyrostat and the Equivalent Oblate
Gyrostat (il,i 2 ,i 3) = (0.7,0.6,0.5) " (0.7,-0.5,-0.6). The ideal initial con-
dition is indicated with a dot in each graph. Note that in (a), the py plane
is "upside-down" from the usual plots we have shown. This figure graphically
demonstrates the effect of the equivalence transformation of Eq. (3.45). In (b)
we only show the upper half of the plane, since this is the only region of interest.
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Having determined the exact initial condition for equilibrium, we assume the

motion begins on a polhode near the equilibrium. That is, we choose a specific

initial condition and investigate the despin dynamics in the Pty plane for various

values of e. Sample trajectories are shown in Fig. 4.17.

The plots in Fig. 4..7 clearly illustrate the resonance capture phenomenon,

and the fact that the captured trajectory ends up between F/ and U. indicates

the nature of the capture: the captured trajectory ends up in one eye of the two

heteroclinic orbits on the sphere. To make this clear, in Fig. 4.18, we show the

instantaneous polhodes for both trajectories at several points during the "despin"

maneuver.

4.7 Intermediate Gyrostats

The intermediate gyrostats differ considerably from the oblate and prolate cases,

principally in the topology of the momentum sphere when there are six equilib-

rium points. The two saddles are at opposite poles of the sphere, and the two

pitchfork bifurcations occur at opposite poles, rather than at the same pole as

in the oblate and prolate cases. In terms of the xy plane, this difference is seen

in the fact that y3(x; Ms) is concave upwards rather than downwards as in the

oblate case. There are still two bifurcations however, allowing for three different

possibilities for the xy plane, as shown in Fig. 4.19.

The py plane is shown in Fig. 4.20. As with the previous cases, the solid

curves correspond to centers of the unperturbed system, and the dashed curves

correspond to saddles (and their separatrices) of the unperturbed system.

There are two spinup problems of interest for intermediate gyrostats, but as

they are qualitatively equivalent, we call them both intermediate spinup (ISU).

These are shown as dotted lines in Fig. 4.21. Note that intermediate spinup

trajectories are quite similar to flat spin recovery trajectories (compare Fig. 4.13).
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Figure 4.17. Resonance Capture. Inertia parameters are (c2, :3) = (-0.5,-0.6).

Initial conditions are (x1,x2, x3,M) = (-0.94,0.34,0.00,0.66). Rotor despin
torques are e E {-0.10, -0.01}. The dotted trajectory is captured near the
flat spin equilibrium point, while the dashed trajectory escapes to oscillate near
the south pole equilibrium point (see Fig. 4.18). Note that the flow is from right
to left in this figure. (a) The #sy plane. (b) The #tx plane. (c) The cone angle.
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Figure 4.18. Sche-matic of Resonance Capture on the Momentum Sphere. Several
instantaneous poihodes are shnv'n for the flow in Fig. 4.17. The dotted and dashed
poihodes represent the instantaneous polhodes for the trajectories in Fig. 4.17.
The poihodes on the left side of the figure correspond to the captured trajectory,
while those on the right correspond to passage through resonance.
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Figure 4.19. The xy Planes for Intermediate Gyrostats (i2 , i3) =(-0.3, -0.7),
A E{0. 1, 0.4, 0.8}. Each plot corresponds to a fixed value of p. Constant energy

curves on the sphere correspond to y = CONST. Compare with Fig. 4.5.
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Figure 4.20. The uy Plane for Intermediate Gyrostats (i 2 , i3) = (0.7,-0.3).
Compare with Fig. 4.7.

Table 4.3. Bifurcation Values of p for Intermediate Gyrostats

1 Bifurcation

P2 22 > 0 Pitchfork bifurcation: a pair of flat spin centers F+

coalesce with the saddle at the north pole I+

creating a center at the north pole.

p3 = - i3 > 0 Pitchfork bifurcation: a pair of flat spin centers F;

coalesce with the saddle at the south pole I"

creating a center at the south pole.



77

y (a)

2

0 <

-2
0 0.2 0.4 0.6 0.8 1

x (b) 7 7 (degrees) (C)

VV

it 10 U f,
04

I'l Wii AAI

-1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 068 0.8 1

Figure 4.21. Intermediate Spinup (i2 , i3) =(0.7, -0.3). For both trajectories, the
initial values of (xl, It) are (0.6, 0.0). The initial values of (X2, X3) are (0.8, 0.0)
and (0.0, 0.8), with the former corresponding to the trajectory where y < 0, and
the latter corresponding to the trajectory with y > 0. The initial values are near
the points F- and F+, for p = 0 (see Fig. 4.20). (a) Projection onto the /t
plane. (b) Projection onto the yx plane. (c) The cone angle.
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Table 4.4. Equilibrium Points for Intermediate Gyrostats

Equilibrium x Range of p Energy (y)

for center for saddle

I +  +1 (p2,00) [0, A2) -2p

-1 (p3, 00) [0, p) +2p

F- A/i3 [0, ,3) - A 2 //A3 + AL3

F+ ,/i2 [0,p,2) -(P
2 /A2 + P2)

The values of X2 and X3 are given at Eqs. (3.37)-(3.39).

4.8 Summary

In this chapter we have related classical approaches to viewing spinup dynamics

to our approach, which represents spinup as a trajectory in the Py plane. We

then applied the py plane to a resonance capture problem similar to one which

has previously been discussed in the literature. Although we have shown that

trajectories in the py plane approximately represent the full dynamics, we must

keep in mind that these trajectories axe obtained by integrating the full system of

four differential equations. We would like to obtain a single differential equation

describing the flow in the py plane. In the next two chapters, we obtain such

an equation. First we develop the periodic e = 0 solution for x(t) in Chapter 5.

Then in Chapter 6 we apply the method of averaging using this periodic solution.



Chapter 5

The E = 0 Solution

In Chapter 3 we showed that the equations of motion reduce to a single elliptic

integral when c = 0. In this chapter, we give the solutions to this integral in

terms of Jacobi's elliptic functions. Although the existence of such solutions

is known and they have been given by several authors (see Section 1.2.1), the

present work is apparently the first development in dimensionless form. We give

the e = 0 solution for all axial gyrostats, and furthermore, we use the py plane as

a bifurcation diagram to show where the various forms of the solution apply. We

also identify two cases with elementary solutions that have not previously been

reported.

In developing the elliptic function solution, we found the volume of tables by

Byrd and Friedman [10] quite useful. Also the more recent text by Lawden [55]

helped to clarify some points regarding elliptic functions and integrals. We begin

this chapter with a brief introduction to elliptic functions, followed by the oiution

for the angular momentum x as a function of time. At the end of the chapter,

we discuss several issues regarding the frequency and phase of the solution. The

details of inverting the elliptic integrals are relegated to Apprndix C.

79
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5.1 Elliptic Functions

In what follows, we make use of the elliptic functions sn(u; k) and cn(u; k), which

are similar to the familiar trigonometric functions sin u and cos u. An obvious

difference, of course, is the appearance of the parameter k, known as the modulus,

which effects a change in the period of oscillation. In practice the modulus takes

on real values on the interval [0, 1]. When k = 0, the elliptic functions reduce to

their trigonometric counterparts, and when k = 1, they become infinite period

hyperbolic functions. The limits are shown in Table 5.1, along with those for

dn(u; k). The elliptic function dn(u; k) does not appear in the e = 0 solution given

here; however, it does arise in the averaging process in Chapter 6. In Fig. 5.1, we

show the elliptic functions along with their elementary function counterparts.

Table 5.1. Limiting Values of Elliptic Functions

k 2  0 k 2

sn(u; 0) =sin u sn(u; 1) =tanh u

cn(u; 0) = cos u cn(u; 1) = sech u

dn(u;0) = 1 dn(u; 1) =sech u

The period of the elliptic functions sn(u; k) and cn(u; k) is 4K(k), where K(k)

is the complete elliptic integral of the first kind, defined by

K(k) = /2 d9 (5.1)

JO 1-k 2 sin 2 0

It is easy to verify that K(0) = 7r/2, and K(1) = oo. A plot of K(k) is included in

Fig. 5.1(d), as well as a plot of E = E(k), which is the complete elliptic integral

of the second kind. We also note that the period of dn(u; k) is 2K(k), as may be

seen in Fig. 5.1(c).
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Figure 5. 1. Elliptic Functions. (a) sn(u; k). (b) cn(u; kz). (c) dn(u; kz). (d) K(k)
and E(k). In (a)-(c), the value of u indicated as 4K(k) is u = 4K(O.7). Note
that K(O) = x/2, while K(1) = oo, as shown in (d).
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5.2 The Gyroscopic Function and Its Roots

The elliptic integral we are interested in is given at Eq. (3.64), rewritten here as

t = ±- d0 (5.2)

where W(x) is the quartic polynomial in x = xi given by

W(x) = - (y2(x; A) - Y) (y - Y3 (X; A)) (5.3)

Recall that y2(x; p) and y3(x; Ai) are the quadratics given at Eqs. (3.60) and (3.61).

Written out in full, this quartic is

W(X) = (32- 2px - i3 - Y) (i2 X2 - 2jix - i2- Y) (5.4)

Leimanis [56] calls W(x) the gyroscopic function, apparently a translation of

Leipholz's kreiselfunktion [57]. Since W(x) is already conveniently factored, we

choose to view it as the product of two quadratics, as discussed in Section 4.3.

This approach has the additional advantage of requiring only one figure for a

given value of ju, valid for all admissible values of y. The gyroscopic function,

however, must be graphed for each value of A and each value of y. Thus, to

obtain the equivalent information contained in a single xy plane (see Fig. 4.5),

one would require several W(x) graphs. For reference, in Fig. 5.2 we show two

W(x) curves corresponding to the ry plane in Fig. 4.5(a). Further discussion

of W(x), including numerous figures, is available in §16 of Leimanis [56], and in

Leipholz [57].

The solution to Eq. (5.2) depends on the roots of W(x). The roots in turn

depend on the constant values of A and y, as well as on the parameters i2 and i3 .

We denote the roots of y2(x; A) - y = 0 by r2 and those of y - y3(x; A) = 0 by

30. The values of these roots are given by

24- [j,2 + i3(i + y) ()
i3

A 4- VA 2 + i2(i2 + Y)
r3 (5.6)

Z2
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Figure 5.2. The Gyroscopic Function W(x). The inertia parameters are
(i 2 , i 3) = (-0.3, -0.7). The rotor momentum is ps = 0.1. (a) W(x) has four
real, distinct roots for y = 0.29. (b) W(x) has two real, distinct roots and two
complex roots for y = 0.5.

There are a number of different possibilities depending on whether these roots

are real or complex. Referring to the xy plane in Fig. 5.3, the four roots are

the values of x at the intersections of a given straight line y = CONST and the

two parabolas y2(x; I) and y3(x; P). Since y < y2(x; IL), the roots r2 are always

real; however, r3 may be real or complex. For the elliptic function solutions, we

adopt the notation used by Byrd and Friedman [10]; in particular, when all four

roots, r±, r±, are real and distinct, they are renamed as a, b, c, and d so that

a > b > c > d. When only r2 are real and distinct, they are renamed a and

b, with a > b, and the two complex roots are c = r3 , e = r + . Real repeated

roots correspond to solutions in terms of elementary functions, and we list the

possibilities later.

The rest of this chapter is devoted to a detailed exposition of the different

forms of the solution to Eq. (5.2). As usual, we begin with the oblate case, then

follow with the results for intermediate gyrostats.
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b a A

Bc b

C

Figure 5.3. The xy Plane with Roots of the Gyroscopic Function Identified. The
three straight lines correspond to different numbers and ordering of the real roots
of W(x): (A) two real roots, a = r-, b = r, and two complex roots, c =

S= r+; (B) four real roots, a = r-, b = r-, c = r+, d = r; (C) four real

roots, a = r-, b = r-, c = r, d = +. Note that (A) corresponds to the
gyroscopic function shown in Fig. 5.2(b), and (B) corresponds to Fig. 5.2(a). See
also Fig. 4.5.
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5.3 Oblate Gyrostats

As noted above, there are two basic cases: (1) there are four real roots, or (2)

there are two real roots and two complex roots. The first of the two cases has

two subcases depending on the range of x, and one of these two subcases also

has three additional subcases. This gives a total of five different solution types,

corresponding to the regions of the ty plane shown in Fig. 5.4. Note that an

additional curve has been added to Fig. 4.6 to give Fig. 5.4: the thin solid line

separating Region 2 from Region laiii is an extension of the locus of maxima of

y3(x; p) given by Eq. (4.2). These points are not equilibrium points; however,

they do correspond to special (trigonometric) solutions to Eqs. (3.25)-(3.28).

Because i3 < 0 and p > 0, it is evident that r- > r+ . Likewise, r- > r+

follows from i2 < 0, and it is easy to verify that r- > max{r+,r±}. Hence

throughout the p.y plane, the largest root is a = r2'. The ordering of the other

three roots to satisfy b > c > d is determ:ned by the constant values of P and y.

Table 5.2. Regions of the py Plane (Fig. 5.4) for Oblate Gyrostats (i 3 < i 2 < 0)

Region Range of p Range of y a b c d

lai [0, 00) [-21z, 2M] r- r- r+  r+

laii [0, P2) [2,u,,2 /Pt2+ U21 r- r- r+ r+

laiii (/12, Y3) [2p, min{ 2 /P1 2 + 2, 2/A3 + 311 r 2 
-  "3 r r

lb [0, A2) [21z, t12/112+121 r- r- r+  r+

2 [0, A3) [Y22/A2 + J2,112/A3 + 31 r- r +  -r/ +

In Region 1, the roots are ordered a > b > c > d, and all are real.

In Region 2, a > b are real, but as r± are complex conjugates, c > d is

meaningless.

The roots r± and r± are given at Eqs. (5.5) and (5.6).
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y
2

Region 2 Region laijiiM

0 Region lai

Region la i

Region lb

-2
0 0.2 0.4 0.6 0.8 1

Figure 5.4. Regions in the py Plane for (i2, i3 ) = (-0.3, -0.9). The numbered
regions correspond to those in Table 5.2. Regions laii and lb occupy the same
area of the plane because, in this region there are two polhodes corresponding to
each y: one about O,, and one about P.. See Fig. 4.5, p = 0.1.
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5.3.1 Region 1

The e = 0 solution has the same form throughout Region 1 and its subregions. Of

course, the ordering of the roots depends on the subregion as shown in Table 5.2.

A more significant difference exists between Regions la and lb. In Region la,

b < x < a, and Eq. 256.00 in Ref. [10] applies, whereas in Region 1b, d < x _< c,

and Eq. 253.00 in Ref. [10] applies. The resulting difference between the two

solutions involves simple parameter definitions as shown below. Thus the C = 0

solution for oblate gyrostats in Region 1 is:

x(u;k) - 2 } (5.7)

where 03, a 2 , and al depend on whether the point (y, p) is in Region la or

Region 1b:

Region la Region lb

3= b 3 = c (5.8)

a-b 2 c-d (5.9)
a-cb-

2= C 2 = b 2  (5.10)

and the rest of the parameters are

k -2 (a-b)(c-d) (5.11)

(a-c)(b-d)

u = At + u0 (5.12)

A 1 (c)(b-d) (5.13)
2

Note from Eqs. (5.9) and (5.11) that 0 < k2 < a 2 < 1 in both cases.

There is also an alternative solution for which a2 < 0, obtained via Eq. 252.00

or 257.00 of Ref. [10]. It has the same form as Eq. (5.7), but 3, a2 , and a, are

defined differently:

Region la Region 1 b

/=a 3=d (5.14)
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2 _ b-a 2 d-c
b-d a-c

2= da 2  (5.16)-a a1 a I d

and the rest of the parameters are given by Eqs. (5.11)-(5.13). The usefulness of

this alternative is made clear in Chapter 6.

5.3.2 Region 2

In Region 2, where a > x > b, the roots r are complex conjugates, while r are

real. The real roots are ordered so that a = r- > b = r + . The complex root c is:

p + V 2 i2i2y
C U2 + i2(i2 + Y) = bi + ial (5.17)c : i2

from which b] = p/i2, and a, = '- (p2 + i 2(i 2 + y))/i 2 . Following Ref. [10], we

define A 2 = (a - bl) 2 + a2 , and B 2 = (b - bl) 2 + al. Now, using Eq. 259.00 in

Ref. [10], we obtain the e = 0 solution for oblate gyrostats in Region 2:

x(u; k) = ~ { + icn (u;k ) }(5.18)f1 + acn(u; k) (.8

where

aB + bA- A +B (5.19)
A-B

a = A+B (5.20)
A+B

oi1 = bA - aB (5.21)

k2  
- (a - b) 2 - (A - B) 2  (5.22)

4AB

u = t + uo (5.23)

A = 1-V 2i3AB (5.24)
2

The use of 2A in Eq. (5.23) and the factor of 1/2 in Eq. (5.24) above simplifieo

later notation, as explained in Section 5.6 below. Note that since a > b, it is also

true that A > B, which implies 0 < a < 1. This fact is useful in the application

of the method of averaging in the next chapter.
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5.4 Elementary Solutions

Recall that the solid (F,, O, P,) and dashed (Up and P,) curves in the py

plane correspond to branches of equilibrium points of the unperturbed system

(cf. Fig. 4.7). It is easy to verify that the points on these curves correspond to

constant values of x(u; k). In terms of the elliptic function solutions given above,

these special points in the py plane correspond to a real repeated root of the

gyroscopic function. In Table 5.3, we list all of the possible repeated roots for

oblate gyrostats, including cases that do not correspond to equilibrium points of

the unperturbed system.

Table 5.3. Repeated Roots for Oblate Gyrostats

Locus Region Repeated Root Implication

01, lai a=b=1 a2 =a2 =k 2 =O'x=1

P, lai a = b = -1 a2 = k2 = O,X = -1

P0 lai n laii c = d = -1 V2 = 0, sn(u; k) ---, sin u

Pt laifnlaiii b=c=-1 a 2 =a?=k2 = l ,x - -1

P1,* lai n laiii b = c = -1 P2 = 1, sn(u; k) --*tanh u

U11 laii n 2 b = c ='"/i2  a 2 = a2 = k 2  = 1,x= /i 2

UM,* laii n 2 b = c = //i 2  k 2 = 1, sn(u; k) -tanh u

U1, lb n 2 b = C = /i2 k 2 = 1, sn(u; k) -tanh u

FIA 2 a = b= A/i3  a =al = V=0k2 = O,x = /i3

Ft, laiii a = b = /I/i3 a 2 = a2 = k2 = Ox = /i 3

A2 /P2 + 92 2 n laiii c = d = A/i2 k2 = O, sn(u;k) -- sinu

* Using the alternate solution.

Recall that we stated that the solid curve separating Region 2 from Re-

gion laiii corresponds to a trigonometric solution. The line separating Region laii



90

from Region lai also corresponds to a trigonometric solution. To the author's

knowledge, these special solutions have not been identified previously. In this

section, we detail how these elementary solutions are obtained from the elliptic

function solutions. There are also hyperbolic cases corresponding to the separa-

trices of the saddle points. These axe shown in Table 5.3, but we do not derive

them here.

5.4.1 Region laii-to-Region lai

First, it is important to note that the segment of P , (y = 2yi) on the interval

A E [0, P2) is identified with two types of trajectories in the xy plane. Referring

to Fig. 5.3, a point on this segment of P. may be seen to correspond to the

equilibrium point at the south pole, as well as to the trajectory with b < x < a.

The latter of these corresponds to a trigonometric solution for x(t). The repeated

root in this case is c = d = -1. From Eqs. (5.8)-(5.13) we find that the only

significant effect is that k2  0 on this segment of P,. Thus the c = 0 solution

along this segment of P, in Region la has the same form as Eq. (5.7), but with

sn(u; k) --+ sin u. That is,

I 1 J a-c2sin 2 u1
X(u) l -2sin 2  (5.25)

where 3 = b, a 2 = (a-b)/(a + 1), a = -a 2/b, and u = i

u0. The roots a and b are defined as in Table 5.2.

5.4.2 Region 2-to-Region laiii

This transition curve is defined by y = p21/t2 + A2, with p E (P2, A3). The

repeated root is c = d = p/i2. Using the Region laiii solution at Eq. (5.7),

we find a solution of the same form as Eq. (5.25) above, with the parame-

ters given by /3 = b, c2 = (a - b)/(a - A/Z2), al = p 2/(i 2b), and uo =

2Vi2z3(a - P/i 2 )(b- pt/i 2 )t + uo. The roots a and b are defined as in Table 5.2.
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5.5 Intermediate Gyrostats

For intermediate gyrostats, i2 > 0 > i3, and the symmetry transformation

Eq. (3.45) allows us to further assume i2 > Ji3j with no loss of generality.

All four roots r± and r± are always real in this case, and x is in the range

a > b >_ x > c > d. The py plane is divided into three regions as shown in

Fig. 5.5, and the four roots axe ordered differently in each region, as listed in

Table 5.4.

Using Eq. 254.00 of Ref. [10], the elliptic function solution for C = 0 is

x(u;k) =a3{ 1 csn 2 (u;k) } (5.26)

where

=c (5.27)

a2 _ b- c (5.28)

a 2 = d a 2 (5.29)a1  -CC
= (b- c)(a - d) (5.30)

(a-c)(b-d)

u = At + uo (5.31)

1V -i 2 i3(a- c)(b- d) (5.32)

Note that Eq. (5.26) has the same form as Eq. (5.7) for Region 1 of oblate

gyrostats. However, all of the parameters are different. Most importantly, the

parameter a 2 has a different range. Whereas for oblate gyrostats in Region 1,

0 < k2 < a 2 < 1, with Eqs. (5.28) and (5.30), one may show that 0 < a 2 < k2 < 1

for intermediate gyrostats. This fact affects the averaging result obtained in the

next chapter.

As with Region 1 for the oblate gyrostat, there is an alternative solution for

the intermediate gyrostat, having the same form as Eq. (5.26), but with different

definitions for 3, a 2 , and al. Using Eq. 255 of Ref. [10], these parameters are
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defined as

/3=b (5.33)

2 _ b-c (5.34)
a-c

2 = a 2  (5.35)

Note that 0 < a 2 < k2 < 1 still holds for this form of the solution.

y

2 o

Region 1lou

1

0 < - .Region Ici

-11

-2
0 0.2 0.4 0.6 0.8 1

Figure 5.5. Regions in the py Plane for (i 2 , i 3) = (0.7, -0.3). The numbered
regions correspond to those in Table 5.4.

Finally, we note that for intermediate gyrostats, there are no trigonometric

solutions corresponding to those we found for oblate gyrostats. All of the repeated

root cases correspond to fixed points of the unperturbed system. There are of

course hyperbolic solutions corresponding to the saddles, and these are easily
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Table 5.4. Regions of the py Plane (Fig. 4.20) for Intermediate Gyrostats
(i2 > 0 > i3 ,i 2 > 1i6j)

Region Range of p Range of y a b c d

ici [O,00) [-2y,2p] r+  r- r" r +

lcii [0,,U3) [2p, /02 /4+ 112] r +  r- r +  r "

1ciii [0, Y2) [,A2/A3 + A3, -2p] r- r +  r" +

obtained using the elliptic function solution given here.

5.6 Frequency and Phase

In the next chapter, we apply the method of averaging to the equations of motion,

making use of the elliptic function solution given in this chapter. As we have

shown, the form of the c = 0 solution depends on where the slow state is in the

py plane. In Chapter 4 we saw that spinup trajectories generally pass through

more than one region of the py plane. Thus evaluating the averaged slow flow

entails piecing together different forms of the averaged equations at the transitions

from one region to the next. This is discussed in detail in Section 6.3.3. Here we

discuss the differences in frequency and phase between the different regions.

5.6.1 Frequency

In Region 1, for both oblate and intermediate gyrostats, the c = 0 solution has

the form of Eq. (5.7), which involves sn 2 (u; k). Hence the period in u is 2K, and

since u = At + uO, the period in t is 2K(k)/A. In Region 2, on the other hand, the

period in u is 4K(k), but we have defined u as u = 2At + uo, so that the period

in t is also 2K(k)/A. Recall that A is defined differently in the two regions.
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Now, we define the angular phase by

{u. Region 1 (5.36)

URegion 2

Thus in all cases, the frequency of oscillation is

Q t'm)AA (5.37)

where A = A(y, p) and K = K (k(y, p)) are evaluated according to the location

of the slow state in the jsy plane.

5.6.2 Phase Differences

We have shown above that there are two different representations of the solution

for Region 1, which we call the primary and alternate representations. As de-

veloped above the only difference between the two forms of the solution is the

definitions of the parameters 3, a 2 , and al , with the primary definitions given at

Eqs. (5.8)-(5.10), and the alternate forms given at Eqs. (5.14)-(5.16). The two

solutions are equivalent, of course, differing only by a phase shift, similar to the

familiar identity sin u = cos(u - 7r/2).

To obtain the phase difference between the two solutions, we let t = uo = 0 in

the primary solution, and let t = 0 in the alternate solution, then solve for uO in

the alternate form, by equating the two solutions. In all subregions of Region 1

(including the intermediate case), this leads to

sn 2 (uo; k) = 1 (5.38)

which has the solution uo = K. Thus the primary and alternate solutions in

Region 1 differ in phase by K.

It is easy to show in a similar fashion that the cn(u; k) solution in Region 2

is in phase with the primary form of the sn 2(u; k) solution in Region laiii at the

transition curve between the two regions.
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5.6.3 The Phase and Frequency of x, Compared to those of x 2

and X3

We find it convenient to use the X2x3 phase plane to illustrate some aspects of the

dynamics of spinup. It is important to keep in mind, however, that the frequencies

we have obtained above are for the x1 oscillations, and are not directly applicable

to X2 and X3. To make this clear, in Fig. 5.6, we show the south pole of the e = 0

momentum sphere projected onto the x3x2 plane. This phase portrait is for the

case where the south pole is a saddle point, i.e., P2 < A < 03.

X2

=0

X 3

Figure 5.6. Phase of the e = 0 Solution for x = x(u; k), Shown in the X3X2
Plane. The values of u shown correspond to the primary form of the solution.
Recall that the angular phase 4 is related to u by Eq. (5.36). The values for the
alternate form are shown below, in Fig. 7.8.

The important thing to note from Fig. 5.6 is that although the trajectories

inside the saddle's homoclinic orbit are quite different from those outside the

homoclinic orbit, the x1 oscillations are qualitatively the same.
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5.7 Summary

In this chapter we developed the elliptic function solution for for the unperturbed

system, by integrating the complete elliptic integral of the first kind developed

in Chapter 3. We also identified previously unreported cases with trigonometric

solutions. The frequency and phase relationships between the various regions and

forms of the solution were discussed in the last section of this chapter. In the

following chapter, we apply the method of averaging using the elliptic function

solution developed here.



Chapter 6

The Averaged Equations

In this chapter we apply the method of averaging to the reduced differential

equations derived in Chapter 3, making use of the c = 0 solution obtained in

Chapter 5. We begin with a brief introduction to the method of averaging, in-

cluding a standard theorem that both justifies our approach and tells us where

to expect problems to arise. In order to use this theorem, we must first trans-

form the reduced equations to a standard form. This is done in Section 6.2.

In Section 6.3, we carry out the averaging calculations, obtaining a single first-

order non-autonomous differential equation for the flow in the Py plane. The fact

that the c = 0 solution is in terms of elliptic functions means that the averaged

equation involves complete elliptic integrals of the first, second, and third kinds.

Numerical integration of this equation yields approximate trajectories that are

quite accurate in all regions of the gy plane, except when the flow crosses an

instantaneous separatrix of the unperturbed system.

As in the developments of the previous chapter, we have found the handbook

by Byrd and Friedman [101 indispensable.

97
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6.1 The Method of Averaging

In applying the method of averaging, there are several standard forms which may

be used, one of which is the angular standard form, developed for example in the

texts by Sanders and Verhulst [90] and Murdock [75]. The notation divides the

equations into two parts: the fast angular variable, and the slow state variables:

- 2(r) + O(e), € E S1  (6.1)

- cf(r, )+O (6 2), r E D C R" (6.2)

where f(r,¢) is periodic in €, and 51 is a circle of unit length, i.e., IIS'II = 1.
More general forms with -0 E T n and f2 = ft(r, 4) are also of interest, but here

Eqs. (6.1) and (6.2) are sufficient.

A useful form of the theorem we use is found in Theorem 11.4 of Ref. [97],

which basically states that solutions to the "averaged" equations

2= (P) (6.3)

r -- (Fr) (6.4)

remain within 0(c) of solutions to Eqs. (6.1) and (6.2) for a time of 0(1/c). The

function f(P) is the average of f(r, 0), defined by

f(r) = Is1 f(r, O)dO (6.5)

with r held constant over the integration.

The principal restriction on the applicability of this theorem is that Q(r) must

be bounded away from zero by a constant independent of e. The set of points in

D where !(r) = 0 is called the resonance manifold, for which the usual notation

is [90, p. 102]:

N = {r E D C R"If(r)= 0} (6.6)

We have more to say regarding the resonance manifold later in this chapter and

in Chapter 7.
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6.2 Transforming to Standard Form

We now recall the reduced equations developed in Chapter 3:

= i±V/y(XA,)-Y y- y3(X,) (6.7)

= -2ex (6.8)

C (6.9)

In this system, r = (y, A), and since we have shown in the previous chapter that

x is a periodic function of t for e = 0, Eqs. (6.8) and (6.9) are already in the form

of Eq. (6.2). It remains to put Eq. (6.7) in the form of Eq. (6.1). Ordinarily, one

uses variation of parameters to obtain a differential equation for the phase of the

oscillation of x (see, e.g., Ref. [17]). However, the parameters in our e = 0 solution

are very complicated (see Eqs. (5.7)-(5.13)). Therefore, we take a different, but

equivalent, approach.

Recall that in Section 5.6.1, we defined the angular phase, 0, by

¢= I 2- Region 12K (6.10)
4K Region 2

where u = At + uo is the time-like argument of the elliptic functions in the 6 = 0

solution, and K = K(k) is the complete elliptic integral of the first kind. For

= 0, € is given by Eq. (5.37), which we repeat here:

S= A(y,) = (6.11)

in either of the two regions. Recall that A = A(y, g) is defined differently in

Regions 1 and 2.

For e # 0, is more complicated. We will now argue that, except for the

resonance zone,

= SI(yA) + O(E) (6.12)

where f(y, p) = A/(2K).
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We begin by differentiating Eq. (6.10) with respect to time:
d ( u )=d (At+ uo ) (6.13)

-dt 1 C Tt 2K /

A +At + 7o 2uK
2K (6.14)

2K 2K 42= £(y,, ) +{A 2 uo4-fi} (6.15)

Since the terms whose derivatives appear in the bracket depend only on I and

y, the bracketed term is formally of O(c). However, in a neighborhood of the

resonance manifold, we encounter the following special difficulties:

* A -+ oo at the two points of pitchfork bifurcation, P. 2 and P. 3.

i K -- oo faster than K2 -+ oo at the resonance manifold.

First we show that A = O(e), almost everywhere in the py plane. Recall that,

from Eq. (5.13), in Region 1 for oblate gyrostats, A = l/i2i3(a - c)(b - d). Thus
8A. OA. 8A. 9A.
aa + b -+ -d + (6.16)
8a b Oic d

We start by showing that OA/aa is bounded almost everywhere, and that ! =

O(c). From the expression for A above, we have

OA i2i 3(b - d) (617)

=a 4/i~i3 (a-c)(b-d)

whose denominator only vanishes if a = c or b = d. The first of these conditions

only holds exactly at the bifurcation point PA3, and the second only holds at the

bifurcation point P, 2. Thus aA/aa is bounded everywhere except at these two

points (see Fig. 4.7).

We now compute t:

a a =a
a -- p + 0 y (6.18)

(9a iOa'
= c - 2x- (6.19)

S+ .(6.20)
13 ( !P' + i3(i3 + Y))
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where we have used a = r- = (#- p2 + i3(i3 + y))/i 3 , which is true every-

where in the py plane (for p _ 0). From Eq. (6.20), t i (e) as long as

,r,2 + i3(i 3 + y) -0 . This term vanishes along the curve y = -(P 2/i 3 + i3)

(which is F. in the py plane), but this corresponds to a = M/i3, which implies

6 = j/i3 = /i3. Thus & = O(e) everywhere in the py plane.

The same type of calculations show that the rest of the terms in Eq. (6.16) are

also O(e), except at the two bifurcation points P1,2 and P, 3 . Thus we conclude

that A = O(e) everywhere in Region 1 of the py plane for oblate gyrostats,

except for the two bifurcation points. The proofs for Region 2 and Region 1c for

intermediate gyrostats are similar and are omitted.

We now show that

lim -=00 (6.21)
k 2 -d K2

To show this, we begin with KC, which by the chain rule, is

k -dA 2  (6.22)
dk2 dt

We can show that dk2 /dt = O(c) almost everywhere, using the same procedure

as was used for A above, with the exceptional points again being P. 2 and P,3-

Since the calculations are similar, we omit the details, and continue with dK/dk2 ,

which evaluates to

dK E - k'2 K
dk 2 = 2k 2 k, 2  (6.23)

where we have used Eq. 710.00 of Ref. [10]. The complimentary modulus, k' is

defined by k'2 = 1 - k2 .

Because E = E(k) is bounded Vk, it is clear that the derivative in Eq. (6.23)

is bounded everywhere except possibly at the limits k2 = 0 and k2 = 1. For the

P = 0 limit, we make use of Eq. 112.02 of Ref. [10], and obtain

lim d(6.24)
k2-o dk 2 - 8
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Hence

dK 1
k2r- 2(6.25)

since K(0) = r/2.

From Fig. 5.1(d), it is evident that limk2-,l dK/dk2 = oo; however, it is not

obvious that dK/dk2 diverges faster than K 2 . So we must show that

lir 1K (6.26)

k2 .1 2 dk 2

Using Eq. (6.23), we may write

1 dK E - k'2 K
K 2 dk 2  - 2k 2 k,2 K 2  (6.27)

E I {2 1( } (6.28)

As k2 -+ 1 the second bracket tends to zero, and the multiplying factor outside the

first bracket tends to . Recalling that k, 1 k2 , the remaining indeterminate

form in the first bracket is

1 (k')-2 -0 as k'2 -+ 0 (6.29)
k'2 2  

00 - K-0

Making use of the limit

1 (K(k) -In 4) =0 (6.30)

which is given at Eq. 112.01 of Ref. [10], two applications of L'H6pital's rule give
(k)2(k') - 2  2(k'i)-2

lim (k)- lim = lim 0- (6.31)
k 2 .0 ( ) 2 k,2....O In k 2 .0 1

Thus, (dK/dk2 )/IK 2 is unbounded for points in the resonance manifold.

Finally, we note that the phase shift, uo, is slowly varying. While we have not

shown that ito = 0(c), this fact follows from the definition of uO. For Region la,

the definition for u0 is given by Eqs. (C.4) and (C.12) in Appendix C. Since u0

depends on the roots of W(x), its derivative with respect to time is O(C). From

now on, we assume that Eq. (6.12) is valid except in the resonance manifold.
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Now, in first-order averaging, we work to O(e) in the slow equations, and

to 0(1) in the fast equation, as noted in Section 6.1. To this end, we truncate

Eq. (6.12) at 0(1), which is justified by the theorem quoted in Section 6.1.

Thus the three governing equations may be written in angular standard form

(cf. Eqs. (6.1) and (6.2)) as

= A"(yt) (6.32)

= -2ex (6.33)

(6.34)

where

f2(y, = A/(2K) (6.35)

and x depends on 0, y, and a according to Eqs. (5.7) and (6.10). Note well that

Eqs.(6.32)-(6.34) are approximate due to the truncation in 4; i.e., Eq. (6.32) is

only valid to 0(1). Also note that the equations are not expected to be valid

near the resonance manifold.

We apply the method of averaging to Eqs. (6.32)-(6.34). As noted in Sec-

tion 6.1, the averaging theorem is not applicable when 1 (r) = 0. It is now clear,

at least mathematically, why the separatrix crossings cause difficulty: the cross-

ings correspond to K = oo, and since A is bounded, Eq. (6.35) implies Q = 0

at the separatrices. That is to say, the separatrices correspond to the resonance

manifold. Also, from Eq. (6.10), 4 is undefined at the separatrix crossings. More-

over, the basic notion of averaging, that of replacing the vector field by its average

taken over one period of the unperturbed system, is expected to be problematic

at the separatrices, where the unperturbed period -+ co, and hence averaging

over one period loses its intuitive appeal. We address these difficulties in more

detail below and in Chapter 7.
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6.3 The Slow Flow

The principle aim of the method of averaging is to "average out" the fast phase

and investigate the dynamics of the slow states. In this section we obtain a single

first-order differential equation describing the flow in the py plane. To do this,

we replace the right hand sides of i and A by their averages over one period in

€. Thus, the averaged equations are

= ~((6.36)

y= -2ct (6.371)

C =(6.38)

where x is the average value of x(O, y, p) over one period in 4.
Eliminating t from Eqs. (6.37) and (6.38), and using ()' for do/dp, we obtain

=-22 (6.39)

where the form of 2 = x(y, p) depends on the region in the my plane as we show

below. This is a single first-order equation for the slow flow. We denote solutions

to this equation by y = ,(; yo,jo), where yo and po are the initial values of y

and p.

Although we have adopted 0 as the angular variable, we find it convenient to

compute x by integrating over one period in u, which is of course equivalent to

integrating over one period in 0. The average of x(u; k) over one period in u is

defined by

o x(u; k) du (6.40)2-4K

where K = K(k) is the complete elliptic integral of the first kind, and is the

quarter period of both sn(u; k) and cn(u; k). While evaluating the integral in

Eq. (6.40) we hold both y and p fixed, since they are constant in the unperturbed

system.
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6.3.1 Oblate Gyrostats

The form of t = t(y, p) depends on the region in the /y plane, just as the e = 0

solution does. In this section we obtain t for oblate gyrostats, where the 1 y plane

is divided into regions as in Fig. 5.4.

Region 1

In Region 1, x(u; k) is given by Eq. (5.7), which involves sn 2 (u; k), so that the

period in u is 2K instead of 4K. Furthermore, sn 2 (u; k) is symmetric about

u = K, so we may use as the average of x the integral
1 K /3Kf1-a~s2 (u 2

X= x(u; k)Jdu sn (u; k) du (6.41)

The integral in Eq. (6.41) is a complete elliptic integral of the third kind. The

symbol a 2 which appears in the denominator is known as the parameter, and

throughout Region 1, one can use Eqs. (5.9) and (5.11) to verify that 0 < k2 <

a 2 < 1. Referring to Eq. 412.06 of Ref. [10], this integral evaluates to

{ _C)[-,Ao(2), k)]

= K + 7r(ck - a2)(ae2 - k2) }(.2
where k = sin - 1 (1 --a 2)/(1 - k2 ). Ao(0 , k) is Heuman's Lambda function and

involves complete and incomplete elliptic integrals of the first and second kinds

(cf. Eq. 150.03 in Ref. [10]):

Ao(?k, k) = 2 {EF(0, k') + KE(4, k') - KF(¢, k')} (6.43)
7

where K = K(k) and E = E(k) are the complete elliptic integrals of the first

and second kinds, respectively, F(0, k) is the incomplete elliptic integral of the

first kind, and E(ik, k) is the incomplete elliptic integral of the second kind. The

complimentary modulus, k, is defined by k12 = 1 k2 . The other symbols in

Eq. (6.42) are defined'in Eqs. (5.8)-(5.13).

Remark 8 The complimentary modulus leads naturally to the complimentary

complete elliptic integrals of the first and second kinds: K' = K(k'), and E' =
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E(k'). We will not need these integrals, so throughout this thesis, we will use K

for K(k), and E for E(k).

Region 2

In Region 2, x(u; k) is given by Eq. (5.18) which has period 4K(k), so Eq. (6.40)

becomes

-- 1 + cn(u; k) } du (6.44)

This integral may be evaluated using Eq. 361.62 of Ref. [10]:

1/ + }inu;k du = 1{alu + 0 -o" [ri(w, &2, k) - afi] } (6.45)

where W = am(u; k), &2 = C,2 /(a 2 _ 1), and fj is given at Eq. 361.54 of Ref. [10]

and depends on whether &2 is less than, greater than, or equal to k2 . Referring

to Eq. (5.20), the fact that A > B > 0 implies that a < 1, hence &2 < 0 < k2 .

Thus
f - 2  [V "k12 ' 2 sd(u; k) (6.46)

fl + k' 2 c0 , tan 1 -a 2 sdu

where sd(u; k) = sn(u; k)/dn(u; k).

The indefinite integral in Eq. (6.45) must be evaluated at u = 0 and u = 4K.

First we dispense with fl: sd(0; k) = sd(IK; k) = 0, and tan-'(0) = 0, hence

fl 14K = 0. The next detail to address is the value of W = am(u; k) at the limits

of integration: am(0; k) = 0 and am(4K; k) = 21r. Furthermore, 1(0,.,.) = 0,

and II(2r,.,.) = 4H(ir/2, ,.).

Thus we arrive at the average value of x(u; k) in Region 2:

2 = C0 faK + a - al j(&2, k) (6.47)
aK + 1 2

where fl(&2, k) is the normal complete elliptic integral of the third kind with

parameter &2 = a2 /(a 2 _ 1) < 0.
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6.3.2 Intermediate Gyrostats

For intermediate gyrostats, the c = 0 solution is given at Eqs. (5.26)-(5.32), and

is of almost the same form as for Region 1 of oblate gyrostats. However, with

Eqs. (5.28) and (5.30), one may show that the parameter, a 2 , has a different

range: 0 < a 2 < k2 < 1. Thus Eq. 414.06 of Ref. [10] applies, giving
{ 3 ( a 2 - a 2 ) K Z ( O,' k ) }(.)

X= K IK + (a2 ( 1 2KZ( -,) (6.48)
KI 2 ( - a2 )(k2  a) I

where Z(?k, k) is Jacobi's Zeta function (cf. Eq. 140.01 in Ref. [10]):

KZ(P, k) = KE(4', k) - EF(i1, k) (6.49)

with argument ?k = sin - ' (a/k). Recall that K = K(k), E = E(k), and that the

rest of the parameters are defined at Eqs. (5.27)-(5.32).

This form for ± holds in all three regions, the difference being the ordering of

the roots as given in Table 5.4.

6.3.3 Evaluating the Slow Flow for Spinup Trajectories

The simple form of the averaged equation, Eq. (6.39), is misleading. Recall from

Chapter 5 that each of the parameters a 2 , a?, 6, and k2 depends on the roots

of the gyroscopic function, which in turn depend on both y and Y, as well as

the inertia parameters i 2 and i3 . Then x depends on these parameters through

Eqs. (6.42), (6.47), or (6.48), which involve elliptic integrals of the first, second.

and third kinds. Thus 2(y, p), depends in a complicated way on both y and pL,

and on the inertia parameters i2 and i3.

Given the complexity of t(y, p), it appears unlikely that an analytic solution

to Eq. (6.39) will be found. Furthermore, Eq. (6.39) is nonautonomous, so there

are no fixed points in the py plane. There are, however, special solutions to

Eq. (6.39) which may be used in a further perturbation analysis. This possibility

is explored in Chapter 8. In this chapter, we discuss only numerical results.
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Equation (6.39) may be numerically integrated for given initial values of j and

y, generating a trajectory in the py plane. The right-hand side of the equation

changes form as the trajectory passes through the different regions of Ihe plane.

In the following paragraphs we give the details for the different spinup problems,

three of which involve separatrix crossings. In the next section, we discuss the

sel axatrix crossings.

Oblate Spinup

For oblate spinup, trajectories lie entirely in Region lai (see Fig. 4.10). Thus 2

is given by Eq. (6.42), with the various parameters defined under "Region la" at

Eqs. (5.8)-(5.11), and the roots ordered as given in Table 5.2.

Prolate Spinup

Referring to prolate spinup as represented in Fig. 4.12 (see also the xy planes in

Fig. 4.5), we see that trajectories begin in Region 1b, cross the separatrix into

Region 2, cross again into Region laii, and then finally pass into Region lai. This

is shown schematically in Fig. 6.1. Recall that trajectories cannot pass out of

Region lai for the reasons depicted in Fig. 4.8. Thus there are four "legs" to the

prolate spinup trajectory.

1. Region 1b: 2 is given by Eq. (6.42), with parameters defined under "Re-

gion lb" at Eqs. (5.8)-(5.11).

2. Region 2: t given by Eq. (6.47), with parameters defined at Eqs. (5.19)-

(5.22).

3. Region laii: t is given by Eq. (6.42), with parameters defined under "Re-

gion la" at Eqs. (5.8)-(5.11).

4. Region lai: same as for Region laii.
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Of course, the ordering of the roots changes between the regions also, as given in

Table 5.2.

.2 2

."FI, FI,

Figure 6.1. Schematic of Prolate Spinup. The trajectory starts near the south
pole of the momentum sphere, then crosses an instantaneous separatrix into Re-
gion 2, then crosses out of Region 2 into Region lai. Compare with Figs. 4.3, 4.5
and 4.12. The numbers correspond to the regions in the py plane in Fig. 5.4.

We note that all the transitions are smooth in the sense that the two forms

for t are equal along the curves separating the regions. The transitions from

Region lb to Region 2 and from Region 2 to Region laii, however, correspond to

separatrix crossings, whereas the transition from Region laii to Region lai does

not. Recall that for c = 0, the curve separating Region laii from Region lai

corresponds to a trigonometric solution for x(t).
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Flat Spin Recovery

A flat spin recovery trajectory passes through Regions 2, laiii, and lai, in that

order (see Fig. 4.13). Thus there are three legs to flat spin recovery:

1. Region 2: t is given by Eq. (6.47), with parameters defined at Eqs. (5.19)-

(5.22).

2. Region laiii: t is given by Eq. (6.42), with parameters defined under "Re-

gion la" at Eqs. (5.8)-(5.11).

3. Region lai: same as for Region laiii.

The first transition, from Region 1 to Region laiii, presents no difficulty, as

there is no separatrix crossing involved. However, the second transition, from

Region laiii to Region lai, represents a separatrix crossing.

Intermediate Spinup

Intermediate spinup trajectories are relatively simple compared with those for

prolate spinup and flat spin recovery, since there are only two possibilities as

shown in Fig. 4.20. Either a trajectory starts in Region lcii and passes into

Region lci (with a separatrix crossing), or it starts in Region lciii and passes

into Region lci (also with a separatrix crossing). It is also possible for an ini-

tial condition to lie inside Region ici, in which case the trajectory remains in

Region lci.

6.3.4 The Separatrix Crossings

As we have noted in the previous section, three of the four cases involve sepa-

ratrix crossings, a subject which is of current research interest. Technically, the

averaged equation, Eq. (6.39), is not valid in the vicinity of the separatrix, as

discussed in Section 6.2. In this chapter, following Copolla and Rand [17], we
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use an instantaneous separatrix crossing, that is, we assume the flow crosses the

instantaneous separatrix instantaneously.

For example, in Region laiii for flat spin recovery, we integrate the averaged

equation using the correct form of t for that region, checking at each time step

to see whether the flow has entered Region lai. Once the flow enters Region lai,

we switch to the appropriate form of t, which in this case is simply a matter of

reordering the roots of the gyroscopic function. As we show below, this method

results in significant error for some initial conditions.

6.3.5 The Average Cone Angle

Recall that in the dimensionless variables, the cone angle is 77 = cos - 1 x. For

given y and p, we define the average cone angle as

q = cos - 1 2 (6.50)

Thus for a specific rotor momentum p and energy level y, Eq. (6.42), (6.47),

or (5.26) may be used with Eq. (6.50) to compute the average cone angle.

In closing this section, we point out that although complicated in appearance,

the elliptic integrals involved in x are easily computed using a subroutine library

such as that given in Ref. [831.

6.4 Comparisons of Exact vs. Averaged Trajectories

In this section, we compare trajectories computed as discussed in Section 6.3.3

with "exact" solutions. The exact solutions are obtained by numerically integrat-

ing Eqs. (3.25)-(3.28), then computing y by Eq. (3.56). In some cases, the exact

and approximate curves are indistinguishable when plotted in the my plane, so

we use the percent relative error, defined as

= 00(Y(6.51)
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where y is the "exact" value and y is the solution to the averaged equation. In

Fig. 6.2, we show e,. vs. i for the various spinup problems. We only give one

example for each spinup problem so that the figures are clear; however, these are

representative, and we give further evidence of their validity below.

Note that for oblate spinup (Fig. 6.2(a)), the error e,. is much smaller in

comparison with the values of e used than in the other three cases. This is true for

a number of reasons. First, oblate spinup does not involve a separatrix crossing.

However, this alone is not enough to account for the small error, since the oblate

spinup error is smaller than the other cases before the separatrix crossings. Also

note that in the other spinup problems, the magnitude of the oscillation of the

relative error decreases once the trajectory passes into Region lai (or Region ici

for the intermediate case). Thus it appears the averaged equation is simply more

accurate in Region lai(lci), without considering the separatrix crossing issue.

The reason for this interesting result is that t is nearly constant in this region,

which is in agreement with our observation in Section 4.5 that oblate spinup

trajectories are nearly straight lines in the py plane (since dy/dp = -2x).

Since x plays such an important role, we also plot X and x against p in Fig. 6.3,

where x is computed as a by-product of integrating the averaged equation, and

x is obtained by numerical integration of the dimensionless equations. Note that

2 is nearly constant after the separatrix crossings, and that the oscillations of x

decrease in amplitude and increase in frequency. It is easy to verify that as p

increases in Region lai, the modulus k2 tends to zero, while the 0(1) frequency,

S1, tends to oo, which accounts for the increase in frequency.

As we discussed in Section 4.5.5, the initial phase does affect the dynamics

in the unaveraged system, especially for those spinup problems which cross the

separatrices of the unperturbed system. In Fig. 6.4, we show this effect for all four

spinup problems. The plots were constructed by choosing a specific initial polhode

(i.e., specific (A, y)) and using points on the initial polhode as initial conditions
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Figure 6.2. Percent Relative Error for the Different Spinup Problems. Differ-

ent values of e were used to obtain reasonable errors. For oblate spinup (a),

= 0.01, while for prolate spinup (b), e = 0.0001. For both flat spin recovery (c)

and intermediate spinup (d), c = 0.001. The inertia parameters in (a)-(c) are

(i2 , i3) = (-0.3,-0.7). In (d) they are (i2 , i3) = (0.7,-0.3).
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Figure 6.3. x and . vs. i for the Different Spinup Problems. (a) Oblate spinup.
(b) Flat spin recovery. (c) Intermediate spinup. Prolate spinup is not shown,
because for the small value of c used (0.0001), the frequency of oscillation in the
Mx plane is too large to obtain a nice plot.
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for the full unaveraged equations. The final value of the energy y, denoted as

yf, is defined as the value of y when p = 1. The final value of Y, denoted 9f, is

defined similarly, and obtained by integrating the averaged equation for the slow

flow, up to P = 1.

In the plots in Fig. 6.4, we have made the "ticks" on the vertical axis propor-

tional to the e used for each problem. Thus it is clear that for oblate spinup the

averaged equation is very close to the exact trajectory, whereas for prolate spinup,

the diffusion associated with the two separatrix crossings is significant. For the

flat spin recovery and intermediate spinup problems, the accuracy of the averaged

equation is fair except for some initial phases which lead to lyi - YfI > 0(c).

6.5 The Phase Equation and Reconstruction of the
Angular Momentum

Thus far, we have only compared the averaged energy y to the exact energy

y. In this section, we also integrate Eq. (6.36) for 0 and use €. Y, and p to

"reconstruct" x(t). It is important to note that we only need to integrate the

averaged equations, Eqs. (6.36)-(6.38), once to obtain an approximate solution

for all initial conditions on a given polhode. After numerically integrating the

slow equation, (6.39), 9(t) and y(t) are easily obtained, since A = Po + Et. We

then express Q (9,p) as Q(t), and integrate the fast equation for , Eq. (6.36),

i. e.,

= 00 + jf(-)dr (6.52)

where the initial phase Oo appears only as the constant of integration.

Now, given an averaged flow as (¢(t), 9(t), p(t)), reconstructing the flow in

terms of x(t) is simply a matter of , -g the form of x(t) in the unperturbed

system, with the parameters allowed to vary as y and p evolve. This is the usual

approach when variation of parameters is used. Although we did not formally use
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Figure 6.4. Effect of Initial Phase on Accuracy of Averaged Equations. In each
plot the final energy y! is plotted against initial phase 00. The dotted lines repre-
sent the final value of 9f, the averaged energy. The tick marks ae proportional to
the value of e used in the unaveraged equations. (a) Oblate spinup with c = 0.01.
The vertical ticks are spaced by c/10. Thus the error is < c. (b) Prolate spinup
with c = 0.0001. The vertical ticks are spaced by 100c. The error is > C due to
the two separatrix crossings. (c) Flat spin recovery with - = 0.001. The vertical
ticks are spaced by e. The error is 0(c) except for the small set of initial condi-
tions which result in the "spike." This spike is bounded above by yf = 2, since
pf = 1, and y _< 2#A. (d) Intermediate spinup with c = 0.0001 and tick spacing
of 10e. Similar comments as for flat spin recovery are applicable.
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variation of parameters, our approximate unaveraged system, Eqs. (6.36)-(6.38),

is equivalent to what would be obtained with that method.

We denote the reconstructed approximate x(t) as xa(t), or xa(u; k). For each

point in the averaged flow, ( p, , j) = ($(), O(, p(s)), one performs the following

steps:

1. Determine which region of the /V plane the point (,u, 9) is in, using Table 5.2

and Fig. 5.4.

2. Compute the roots of the gyroscopic function according to Table 5.2.

3. If (M,y) is in Region 1, compute the parameters a2, al, 3, k2 , and A,

according to Eqs. (5.8)-(5.13).

If (p,y) is in Region 2, compute the parameters a, el, /3, k2 , and A, ac-

cording to Eqs. (5.19)-(5.24).

4. Compute K = K(k) and use it to obtain the argument of the elliptic

function: u = 2KqS for Region 1, or u = 4K for Region 2.

5. Compute sn(u; k) for Region 1, or cn(u; k) for Region 2.

6. Compute xa(u; k) using Eq. (5.7) for Region 1, or Eq. (5.18) for Region 2.

If the transverse angular momenta are also required, they can be computed using

Eqs. (3.58) and (3.59). The correct signs may be chosen by using the sign of

and the schematic in Fig. 5.6.

Sample plots of x(t) and xa(t) are given in Fig. 6.5. The exact trajectories

in these plots are the same as for the trajectories in Fig. 4.15, which we used to

show the dramatic effect of initial phase on the final state. Note that the exact

trajectory in Fig. 4.15(a) and (c) is quite different from the averaged trajectory.
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Figure 6.5. Comparison of x(t) and x0 (t) for Two Flat Spin Recovery Trajectories.
Plots (a) and (b) show the full trajectory and plots (c) and (d) show close-ups of
the effect of the separatrix crossing. These trajectories correspond to the same
flow as the trajectories in Fig. 4.15: (a) and (c) are for initial condition (2), and
(b) and (c) are for initial condition (1). Note that the averaged trajectory is very
accurate before the separatrix crossing, which occurs at M - 0.64.
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6.6 Conclusions

The principal result of this chapter is the derivation of a single differential equa-

tion for the slow variation of the energy, y, during spinup. Solutions to this equa-

tion, obtained by numerical integration, describe a flow in the Py plane, which

is the slow state space for the unaveraged system. These trajectories provide an

accurate approximation to the exact solutions of the unaveraged system, also ob-

tained by numerical integration, except when trajectories cross the instantaneous

separatrices of the unperturbed system.

In the next chapter, we continue our investigation of these separatrix crossings.



Chapter 7

Passage through Resonance

In the previous chapter we observed that the averaged equations fail to accurately

describe the dynamics near the resonance manifold. This is because trajectories of

the unaveraged system exhibit phase-dependent energy change when crossing the

instantaneous separatrices of the unperturbed system. Since averaging eliminates

the phase from the differential equations for the slow variables, it is not possible

to accurately portray separatrix crossing using the averaged equations.

In this chapter we investigate the separatrix crossing for flat spin recovery.

The other two spinup problems that experience separatrix crossings, prolate

spinup and intermediate spinup, are not discussed here. As we showed in Sec-

tion 4.5.4, prolate spinup is more effective with a large spinup torque; thus the

small torque case to which the averaging theory applies is of less practical inter-

est. Intermediate spinup is quite similar to flat spin recovery, and the treatment

we give here may easily be extended to the intermediate case.

We begin the chapter with a discussion of separatrix crossing in general. The

separatrix crossing problem is sometimes treated as a boundary layer problem,

in which one attempts to connect the averaged equations, which are valid on

either side of the separatrix, with a boundary layer approximation, or separatrix

crossing model. Included in our discussion is a brief introduction to the literature

120
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on this subject.

Recall that the separatrix corresponds to a resonance manifold in the slow

state space, defined as the set of points where the 0(1) frequency Q(y, A) vanishes

(see Eq. (6.6)). For flat spin recovery, the resonance manifold of interest is the

segment of P,, between PA2 and PA3 (see Fig. 4.7). In Section 7.2, we introduce a

local coordinate which is transverse to the resonance manifold, and we examine

flat spin recovery trajectories as they cross the separatrix. The sensitivity to

small changes in initial conditions is illustrated with an example, and we reach

the striking conclusion that no separatrix crossing model, however accurate, can

accurately connect the averaged equations across the separatrix for all initial con-

ditions. This is true because of the combined effects of two phenomena: (1) the

method of averaging introduces a small (O(e)) error in amplitude and phase, and

(2) the small (0(V/)) set of trajectories that get delayed near the saddle point

during the separatrix crossing is extremely sensitive to changes in initial phase.

However, it is possible to connect most trajectories across the separatrix,

and we develop an approximate equation for the change in energy across the

separatrix. This equation accurately describes the change in energy for a given

change in phase, and we use it to derive an accurate formula for the "thickness" of

the last cycle before separatrix crossing. A missing piece of information, however,

is the length of time that a trajectory spends near the separatrix, and we find

that the approximate solution must be applied iteratively through the boundary

layer in order to obtain good agreement with exact solutions.

7.1 Discussion

The problem of separatrix crossing occurs in many physical applications and has

been the subject of active research over the past two decades. After discussing the

problem, we describe some of these investigations. In particular, we show why one

standard approach is not directly applicable to the present problem (cf. Eq. (7.1)).
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In the method of averaging, the dynamics of the unperturbed system are used

to study the dynamics of the perturbed system. Thus any special solutions of the

unperturbed equations will have a significant role in the dynamics of the averaged

system. When the unperturbed system has a saddle type equilibrium point, the

stable and unstable manifolds of the saddle form sepaatrices, separating qualita-

tively different types of motion [97, p. 36]. Under time-dependent perturbation,

the separatrices no longer function to separate distinct kinds of motions, since

solutions of the perturbed system can cross the separatrices of the unperturbed

system. Nevertheless, it is useful for us to think about separatrices of the slowly

evolving perturbed system which leads to the concept of separatrix crossing.

Two distinct possibilities exist for separatrix crossing: a trajectory originat-

ing outside of a separatrix can get captured and land inside the separatrix, or a

trajectory initially inside a separatrix can escape. The underlying physics of sep-

aratrix crossing also presents two possibilities (which may occur together): the

crossing may occur due to a change in the separatrix (growing, shrinking, and

even disappearing separatrices are possible), or the crossing may be effected by

energy addition or dissipation. Our problem falls into the escape due to shrink-

ing/disappearing separatrix category; however, the capture problem discussed in

Section 4.6 is an example of capture due to a growing separatrix.

Resonance capture by way of crossing a separatrix has been investigated by

several authors. Neishtadt [76] studied resonance capture in a model celestial

mechanics problem. Calculating the change in an energy-like quantity near the

separatrix, he was able to compute the probability of capture into a region en-

closed by the separatrices of a saddle point. His method of connecting trajectories

across the separatrix consisted of using the averaged equations up to the sepa-

ratrix, then calculating the probability of capture. Then the averaged equations

appropriate for the region of highest probability are used. In later papers, Neish-

tadt obtained approximate expressions for the change in the adiabatic invariant at
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separatrix crossing for one degree of freedom [77] and two degree of freedom [78]

systems. Neishtadt's work is also summarized in the monographs by Arnold,

Kozlov, and Neishtadt [4], and Lochak and Meunier [63].

Henrard [31] applied adiabatic invariant theory to the study of one degree of

freedom Hamiltonian systems with slowly varying parameter. Like Neishtadt, he

investigated the change in an energy-like quantity upon crossing the separatrix,

and derived an estimate on the probability of capture. Cary et al [11] also

studied the change in adiabatic invariant at a separatrix, showing that the change

has phase-dependent terms of O(e) and O(c In e), resulting in a dispersion of

trajectories crossing the separatrix.

Using elliptic functions and the method of averaging, Coppola and Rand [17]

studied a system with a periodically disappearing separatrix. The disappearing

separatrix in their problem is qualitatively equivalent to the south pole of the mo-

mentum sphere (near the bifurcation point P, 2 ) in the present work. Their first

approach was to assume the flow crosses the separatrix instantaneously. As this

method failed to accurately describe the dynamics, they developed a separatrix

crossing model by expanding the unaveraged equations in a Taylor series about

the separatrix. While their model improved the qualitative agreement between

the averaged and unaveraged equations, some error remained, attributable to the

uncertainty of the boundary layer thickness.

Rand et a! [84] investigated a model spinup problem with imbalance, also

using elliptic functions and averaging. This system has an expanding separatrix,

and trajectories may be captured as they pass around the separatrix. They

obtained an approximate representation of the set of initial conditions leading to

capture.

In a series of papers, Bourland and Haberman [6,8,7], treat separatrix cross-

ing for second-order nonlinear oscillators with time-varying potential, with and

without energy dissipation. In the first two papers [6,8], they used the method
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of multiple scales, while in the more recent paper [7], they applied the method of

averaging after putting the equations into angular standard form. They obtained

an interesting result that appears to offer a means of improving separatrix cross-

ing models: Although usually the difference between the exact energy and the

first order averaged energy is O(c), they showed that, near the separatrix, when

the trajectory is farthest from the saddle point, the difference is o(C) [6,8].

In most of these references, the notion of "excluded initial conditions" is

introduced. For example, Henrard [31] excluded a neighborhood of the stable

manifold of the saddle point, conceding that his approach is not applicable for

this small set of trajectories. A more rigorous approach is taken by Lochak and

Meunier [63, pp. 78-101]. First they define two types of resonant zones which

enclose the resonance manifold: a narrow resonant zone which trajectories may

pass through but not revisit, and a larger zone which covers the narrow zone.

Then they exclude all initial conditions such that their exact trajectories are

either trapped in the resonant zone or are delayed there for a time greater than

O(V/ln(1/e)). Similarly, we find below that some initial conditions have exact

trajectories which cannot be obtained using averaging coupled with a sepaatrix

crossing model, regardless of the accuracy of the separatrix crossing model.

It is also possible to view separatrix crossing as a resonance problem, for which

a substantial theory exists. The monographs by Arnold, Kozlov and Neishtadt [41,

Sanders and Verhulst [90], and Lochak and Meunier [63], all treat resonance

problems arising when Q = 0, of which the present problem is an example.

However, the standard method proposed in these books is apparently not directly

applicable to problems of the type considered here. Their approach is to expand

local coordinates in a Taylor series about the resonance, which results in a second-

order differential equation for the approximate phase, 0,,:

9 - Q e r(r,) f (0a,r,) = 0 (7.1)

where rr is a point in the resonance manifold, i.e., Q (rr) = 0, and f is the

I I I
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Figure 7.1. Two Different Frequency-Phase Relationships. In (a) we show a
typical plot for the types of problems considered in the resonance literature. In
(b) we show a sample plot for a flat spin recovery. In both cases, the frequency
passes through zero; however, it happens in different ways.

unaveraged slow vector field in Eq. (6.2).

The difficulty with applying this approach to our problem is that the gradi-

ent 491/,r is is not uniformly bounded as r approaches the resonance manifold.

(Recall that for the present system, r = (y,Ip).) We prove this by calculating

&I = -A M 1 89) (7.2)
9A F2 2 5A 2K 8M
= -A 1dK 1k 2  1 O4

= 2 KI dk' O T8 ic 2K0

The term in brackets is unbounded for points on the separatrix, as we showed in

Section 6.2. Neither A nor 8k2/Op are identically zero in the resonance manifold,

so we conclude that all/ip is unbounded on the separatrix, and that Eq. (7.1)

is not well-defined. The difference between the case represented by Eq. (7.1) and

the separatrix crossing problem considered here is the manner in which f2 passes

through zero, as illustrated in Fig. 7.1.
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Since these calculations are fairly general, it appears that the approach men-

tioned above is not applicable to separatrix crossing problems formulated as in

Eqs. (6.32)-(6.34). However, it should be possible to reformulate the problem in

such a way as to make it possible to use Eq. (7.1). Since we are interested in the

dynamics near the south pole of the momentum sphere, we can project the phase

portrait of the sphere onto the x 3 x2 plane, and obtain a second-order equation

for i3, which will be similar to the Duffing equation [181.

In the next section we take a closer look at the resonance manifold for flat

spin recovery.

7.2 The Resonance Manifold

For flat spin recovery, the resonance manifold of interest is the dashed line P.

in the py plane, defined by y = 2 p, Y2 < 9 <p43. Unfortunately, it is difficult

to differentiate between nearby trajectories when plotted in the py plane. In

Chapter 6 we used the relative error e, to alleviate this difficulty. In this chapter

we introduce a new coordinate p, by

p = 2M - y (7.4)

which is perpendicular to the resonance manifold, and has the property that p = 0

on the resonance manifold, with p < 0 before the separatrix crossing and p > 0

after the crossing. The plots in Fig. 7.2 illustrate the definition of p as well as

showing the branches of unperturbed equilibria in the pp plane. For comparison,

we also show a single trajectory of the unaveraged system projected onto the Py

and pp planes. This trajectory corresponds to initial condition (1) in Fig. 4.15.

With the use of Eqs. (6.8) and (6.9), we find that

= 2e(1 + x) (7.5)

where no approximation has been made. From Eq. (7.5) it is clear that is

strictly positive unless the trajectory is exactly the saddle point. This follows
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Figure 7.2. Definition of the Transverse Coordinate p. Also shown are the Pip
plane (b), and a closeup of a separatrix crossing, projected onto the py plane (c),
and onto the lip plane (d). The trajectory in (c) and (d) corresponds to the flat
spin recovery trajectory in Fig. 4.15 for initial condition (1).
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from the fact that x = -1 at the saddle, and lxi < 1 everywhere, since the

angular momenta are restricted to the unit momentum sphere by Eq. (3.29).

We will return to Eq. (7.5) in the next section. But first, let us look closely at

flat spin recovery and try to understand what happens near the separatrix. Recall

that in Section 4.5.5, we gave an example with two initial conditions on the same

polhode with different initial phase (Fig. 4.15). That is, the two initial conditions

share the same y(O) = yo and y(0) = po, but are out of phase by A0 1/4.

The point of the example was to show how the initial phase is important for

trajectories that cross a separatrix. We use those same initial conditions here to

discuss the separatrix crossing problem.

In Figs. 7.3 and 7.4, we show the separatrix crossing trajectories of Fig. 4.15,

this time projected onto the x3x2 plane. We also show the instantaneous sep-

aratrices as they appear at the time of crossing, which is different for the two

trajectories.

Figures 7.3 and 7.4 are misleading since the separatrices which are shown are

only valid for the exact values of M at which the crossings occur. For example,

the initial points p are actually inside their associated instantaneous separatrices,

whereas the final points r are outside. Only the points q are shown in their actual

relationships with the instantaneous separatrices. Another way to picture these

trajectories is to show a "three-dimensional" plot of the x3x2 plane as it varies

with p. This is done in Figs. 7.5, 7.6, and 7.7.

Now, trajectories can cross the instantaneous separatrix far from the sad-

dle point, or very close to the saddle. Crossings far from the saddle are well-

approximated by the instantaneous crossing model we used in Chapter 6. As

crossings occur closer to the saddle, however, the trajectories spend an almost

arbitrarily long time near the saddle point (almost, because the saddle becomes

a center in finite time). Trajectories that are near the saddle when the saddle

changes to a center will remain near the center.
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Figure 7.3. Flow .n the x 3 x2 Plane Near a Separatrix. This flow corresponds
to initial condition (1) in Fig. 4.15. The separatrix crossing occurs at point q,
and we show the instantaneous separatrix at the time of crossing. Note that the
trajectory does not pass very close to the saddle point.
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Figure 7.4. Flow in the X3X 2 Plane Near a Separatrix with Delay Near the Saddle.
This flow corresponds to initial condition (2) in Fig. 4.15. The separatrix crossing
occurs at point q, very close to the saddle point. We show the instantaneous
separatrix at the time of crossing. The points q and r are connected by a curve
which is very close to the separatrices.
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X2

,/

Figure 7.5. Three-Dimensional Flow in the X3AX 2 Space Near a Separatrix. This
flow corresponds to initial condition (1) in Fig. 4.15, and to the trajectory in
Fig. 7.3. We superimpose the instantaneous separatrices for several values of p
onto the trajectory. The dots on the trajectory indicate where the trajectory
passes through the planes of the instantaneous separatrices. The points p, q, and
r correspond to the points in Fig. 7.3. As the separatrix "shrinks," the trajectory
escapes and begins to oscillate outside the instantaneous separatrix. The point q
marks the point of separatrix crossing.
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X2

)x3

Figure 7.6. Three-Dimensional Flow in the z3Ax2 Space Near a Sepaxatrix with
Delay Near the Saddle. This flow corresponds to initial condition (2) in Fig. 4.15,
and to the trajectory in Fig. 7.4. We superimpose the instantaneous separatrices
for several values of y onto the trajectory. The dots on the trajectory indicate
where the trajectory passes through the planes of the instantaneous separatrices.
The points p, q, and r correspond to the points in Fig. 7.4. As the separatrix
"shrinks," the trajectory gets delayed near the saddle point, and the delay con-
tinues after the trajectory passes outside the instantaneous separatrix. The point
q marks the point of separatrix crossing. Once the saddle has changed to a cen-
ter, the trajectory oscillates about the center with a smaller amplitude than the
trajectory of Fig. 7.5.
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Figure 7.7. Three-Dimensional Flow in the X3,X2 Space Near a Separatrix Com-
paring Two Trajectories. This figure shows both of the trajectories of Figs. 7.3-7.6
and for a longer interval along the p axis. The two trajectories started on the
same initial polhode (see Fig. 4.15), but experience the separatrix crossing in
dramatically different ways. The dots on the trajectories indicate where the tra-
jectories pass through the planes of the instantaneous separatrices.
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Those trajectories that cross near the saddle can cross before or after the

saddle point. Typically those that cross after the saddle spend a long time near

the equilibrium before the crossing, while those that cross before, are delayed near

the equilibrium after the crossing. The net effect in either case is that the size

of the separatrix decreases during the time spent near the saddle, so that when

the trajectory at last begins to oscillate around the separatrix, the amplitude of

oscillation is smaller than for an instantaneous crossing. Thus the "bad" initial

conditions actually lead to a smaller residual cone angle (see Figs. 4.15). The

trajectories that cross near the saddle account for the sharp "spikes" in the yf

vs. qo plots of Fig. 6.4.

Remark 9 The fact that trajectories near the "pseudo-stable manifold" of the

saddle point are desirable from a practical point of view (smaller cone angle),

suggests the possibility of trying to control the system in order to attain such a

trajectory. Recall, however, that the 9yrostat is a greatly simplified model of a

real dual-spin spacecraft. The delicate balance required to accomplish this sort of

control would be easily destroyed by the countless perturbations present in a real

system.

7.3 An Approximate Solution

In order to develop an approximate equation for the separatrix crossing, we re-

quire the e = 0 solution in a neighborhood of the separatrix. This entails using

the solution developed in Chapter 5, with the modulus, k2 , close to unity. As

shown in Appendix C, the primary solution is not applicable here, since it reduces

to the saddle point in the k2 - 1 limit. Hence we use the alternate form of the

solution, which describes the separatrix for k2 - 1. This form of the solution is

defined by Eq. (5.7) which is repeated here for convenience:

x(u; k) = {1-:~ n :u k )  
(1-a2sn2(u; k)(76
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Figure 7.8. Phase of the Alternate e = 0 Solution for x in the Z3X2 Plane.
Compare with Fig. 5.6, and note the Au = K phase shift.

The parameters are defined by Eqs. (5.11)-(5.16). Recall that for this form of

the solution, a 2 < 0. Furthermore, near the resonance manifold, 1a21 < 1, since

the roots a and b are closer in value than the roots b and d. Also, recall that the

two forms of the solution differ in phase by Au = K, a fact we must use when

we patch the averaged equations to the approximation we develop in this section.

The phases associated with the alternate solution are shown in Fig. 7.8.

Recall that at the separatrix, the modulus is k2 = 1. In order to obtain an

equation valid near the separatrix, we expand sn 2(u; k) in a series for k2 near

one. From Eq. 127.02 in Ref. [10], we have

sn(u; k) = tanh u + sech 2U (sinh u cosh u - u) + 0 (k'4) (7.7)

4

where k'2 = 1 - k2 is the complimentary modulus. Squaring this expression for

sn(u; k), we obtain

sn 2 (u; k) = tanh2 u + -- (tanh2 U _ utanhusech2U + () (7.8)
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Upon substituting Eq. (7.8) into Eq. (7.6) and expanding the resulting expression

in a Taylor series about k12 - 0, we obtain an approximate expression for x(u; k)

near the resonance manifold:

x(u;k) = {- alt + (7.9)

k 12 ( ) (tanh -u utanh usechul

2 (1-2 tanh 2 U 2

which is valid to O(k' 2 ).

The basis of our treatment of the separatrix crossing is to assume that Eq. (7.9)

holds for the flow in a neighborhood of the separatrix, with the parameters a 2,

a, Pi, and A held constant, i.e., only the phase u is allowed to vary. Recall

that these parameters all depend on y and p through the roots of the gyroscopic

function.

Now we return to Eq. (7.5):

A = 2c(1 + x(u;k)) (7.10)

where we will use x(u; k) from Eq. (7.9). In order to obtain an approximate

solution to this equation, we recall that u = At + uo, so that

dt = du (7.11)
A\ + At + 7t0

We have shown earlier that A and tio are O(e), and may be ignored as long as

the flow is not near the bifurcation points PA2 and P, 3 (see Chapter 6). Thus,

letting Adt = du, and using Eq. (7.9), Eq. (7.10) may be written as

dp = T (1 + x(u;k)) du (7.12)

where x(u; k) is given by Eq. (7.9), and the superscripts - and + on the limits

of integration denote the values of p and u at the entrance to and exit from the

resonance boundary layer.
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Making use of the change of variables v = tanh u, Eq. (7.12) can be solved in

closed form, yielding

-"P+- P- u fu-)J(7.13)

where

2 _a(, - ,;)ftan [v/ tanhu] (c1 - 1)
f (u) -a- + ,aa2Uv- - (7.14)

2r2u u(1 - tanh2 u) - tanh u
4[a 1 -1  1-a2tanh2 u

2 tan- 1 [vCr--T tanh ul

(aj2 - )VC-aT

Equation (7.13) is an approximate solution for the change in "energy" associated

with a change in phase near the separatrix. It is approximate in the sense that

in the integration of Eq. (7.12), we held the slowly varying parameters constant.

However, when a trajectory spends a very long time near the saddle point, the

change in p is not small, hence the parameters which depend on # may experience

significant change. Nonetheless, Eq. (7.13) agrees with the actual change in p for

a given phase for most trajectories, as we show in the next section.

Remark 10 Since the c = 0 solution for intermediate gyrostats, Eq. (5.26), is

of the same form as the c = 0 solution for oblate gyrostats in Region 1, Eq. (5.7),

the result obtained here is directly applicable to intermediate gyrostats.

7.4 The Boundary Layer Thickness

The approximate "inner" solution, Eq. (7.13), obtained in the previous section

will be used to patch or connect the "outer" averaged equations through the

resonance manifold where averaging is not valid. The central difficulty here is

deciding when to stop using the averaged equations and start applying the inner

solution, and when to return to the averaged equations. In this section, we use

some heuristics to define a suitable condition for switching between the outer and
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inner equations, and we obtain an accurate estimate of the change in p during one

cycle near the separatrix. However, when we use Eq. (7.13) to patch through the

boundary layer, we find that the approximation significantly underestimates the

exit value of y. After discussion of the reason for this, we use an Euler integration

technique to obtain approximate solutions through the boundary layer.

To justify our approach, we need to examine the periodic nature of the evolu-

tion of p. In Fig. 7.9, we show a plot of p vs. 0 for a flat spin recovery trajectory

as it passes through the resonance manifold, p = 0. Note that p vs. € is a cylin-

drical phase space, (p, 0) E R x S1 , and the trajectories "wrap around" at the

left and right edges of the figure.

Note that for a polhode inside the separatrix loop (see Fig. 7.8), the point

closest to the saddle has phase 0 = 1/2, whereas in the primary form of the

solution, this point has phase € = 0. In order to keep the saddle point "centered"

in Fig. 7.9, we let the phase go from 0 to 1, with the understanding that 4 > 1/2

corresponds to u E (-K,0); i.e.,

{ 9= u uE[0,K] (7.15)
u+1 u E(-K, 0]

The periodicity which is evident in Fig. 7.9 is a generic feature for small 6,

which we have observed for a wide range of initial conditions and values of the

parameters i2 and i6. Additional trajectories plotted on this curve would "fill" the

gaps between the curve shown. We denote by p* the change in p during one period

in 0. The value of knowing p* is in knowing that within one cycle the trajectory

will cross the instantaneous separatrix, i.e., the trajectory will pass thr, gh p = 0.

Thus p* can be viewed as the thickness of a boundary layer or resonant zone which

includes the resonance manifold. We can calculate p* "exactly" by integrating

the full equations backwards from the point (0, p) = (1, 0) until € passes through

€ = 0 (see Fig. 7.11). Then p* is the absolute value of the final value of p. Clearly

this is not a very useful approach, except in verifying the results obtained by
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Figure 7.9. p vs. in a Neighborhood of a Separatrix Crossing (c = 0.0001). The
solid curve is the "exact" trajectory, while the dashed curve was obtained from
the averaged equations, with "instantaneous" separatrix crossing. Note that the
exact trajectory is well approximated by the averaged trajectory, both before and
after the crossing (p = 0). This is typical for trajectories that do not pass too
near the saddle.
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Figure 7.10. p vs. p in a Neighborhood of a Separatrix Crossing (e = 0.0001).
This is another view of the trajectory shown in Fig. 7.9. Note that the tra-
jectory passes through the resonance manifold, p = 0, transversally, and that
the averaged trajectory agrees with the exact trajectory. Compare this with the
trajectory shown in Fig. 7.16, which is not transverse to the resonance manifold.
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Figure 7.11. Schematic Showing Calculation of p*. The "exact" value of p* is ob-
tained by numerically integrating the full equations backwards from (4, p) = (1, 0)
to (0, -p*). The approximate value is obtained by evaluating Eq. (7.13) with end-
points (0-,p-) = (0, -p*/2), (0+, p+) = (0.5,0).

approximate methods. In Fig. 7.12, we show the exact value of p* calculated in

this way, along with two approximations which we obtain below. Note that the

approximate curves agree very well with the exact curve.

We obtain the estimates of p* using the approximate solution developed in

the previous section (Eq. (7.13)). Note that in Fig. 7.9, p* Z 5c. The fact that
p* = O(c) is another generic feature which we have observed for small e, and we

exploit this observation in obtaining an approximation for p*. First, we assume
p= , and for a given value of y, we can calculate the parameters in Eq. (7.13),

since y = 2ys - p, and the parameters depend only on y and p. Thus, since we

have chosen p* = c, the parameters depend only on p and c. Then, referring to

Fig. 7.11, we take p+ = 0, u+ = K, u- = 0, and p- = -p*/2, and Eq. (7.13)

gives:

4c
= - (K + f(K)) (7.16)

where f is given at Eq. (7.14), and we have used f(0) = 0. Recall that u and -
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Figure 7.12. Boundary Layer Thickness: p* vs. IA for c = 0.0001 and
(i2 , i3 ) = (-0.3, -0.7). The exact curve was obtained by numerical integration of
the full equations, whereas the approximations were obtained using Eq. (7.11;).
Approximation 1 was obtained from one application of Eq. (7.16), and Approx-
imation 2 was obtained iteratively. Note that the iterative solution is not as
accurate as the "one-step" solution. The line p* = 10c is shown for comparison.
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are related by Eq. (7.15).

Equation (7.16) defines an approximate value of p* as a function of p and e.

In the plots in Fig. 7.12 the value of p* obtained by the calculation of Eq. (7.16)

is labeled "Approximation 1."

A reasonable refinement would seem to be to iterate Eq. (7.16), using the

newly calculated value of p* to recompute the parameters and obtain a "better"

estimate of p*. However, although this iterative procedure converges, it does not

provide a better estimate of p*. In fact, the estimate appears to be worse, as

shown in Fig. 7.12. This can be explained by recalling that our approximation

is based on Eq. (7.13), which is itself an approximate solution to the integral

equation, Eq. (7.12). One expects the solution to be exactly correct for some

value of p between the limits of integration, p- and p+, which is what we have

observed here, since p* > I P- > C > P+ = 0.

Now, recall the result of Bourland and Haberman [6,8] which we mentioned

in Section 7.1: the difference between the exact energy and the averaged energy

is o(e) when the trajectory is near the separatrix and farthest from the saddle.

Although we have not proven this result for the present system, it can be seen

in Fig. 7.9 that the average value of p is closest to the exact value of p when

0 = 0, 1/2, or 1. The point farthest from the saddle corresponds to 0 = 0 (or

1, which is equivalent). In order to use this observation for our boundary layer

"entry" condition, we need to start "looking" for = 0 when p = -p*. Since

€ = 1/2 also corresponds to a small difference between the exact and averaged

trajectory, we also use € = 1/2 as an entry condition.

This leads us to a tentative algorithm for obtaining trajectories using Eq. (7.13)

to cross the separatrix:

1. Given an initial polhode, that is initial values of y and It, (yo, io), arbitrarily

select the initial phase 0 = 0. (Recall that the initial phase enters solutions

to the averaged equations only as a constant of integration, Eq. (6.52).)
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2. Integrate the averaged equations, Eqs. (6.36)-(6.38), until p = 2,0 - p*,

where p* is computed using Eq. (7.16). Denote the "final" values of (y, p,

by (Y,M, f).

3. Recalling Eq. (6.52), choose a set of points in the interval (-0.5,0.5) to use

as o.

4. Continue integrating the averaged equations, using (y, j, 4) - (Y, M, '+00)

as initial conditions, while checking for the stopping condition on €: € = 0

or 1/2.

5. When satisfies either of the criteria in step 4, apply the approximate

solution through one "period" using the current state to compute p- and

the parameters in Eq. (7.13):

p+ = p- + p* (7.17)

6. Compute the exit state. Since Au = 2K, and u = At + uo, with A and uo

held constant, At = 2K/A, so

A + = j- + e(2K/A) (7.18)

(We will see below that this update is not accurate.)

The exit energy y+ is then given by

9 + = 214+ - p+ (7.19)

Since we have assumed K constant through the boundary layer, with Au =

2K, the exit phase is the same as the entry phase:

+ = €- (7.20)

7. Continue integrating the averaged equations using the boundary layer exit

values of (9, t, €) as initial conditions. This is continued until p = 1.
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Figure 7.13. Comparison of One-Step Separatrix Crossing Model with Exact
Solution and Averaging Solution for e = 0.001, (i 2, i3 ) = (-0.3, -0.7). The final
energy yf(p = 1) is plotted against the initial phase 0. Cf. Figs. 7.17 and 6.4.

8. Steps 4-7 are repeated using the values of 0 chosen in step 3. In this

way we obtain a map of yf vs. 0 for all the initial conditions on a single

polhode.

In Fig. 7.13, we compare the final energy, yf = y(p = 1), as a function of

initial phase, when computed exactly, and with the approximation developed

here. It is evident that this procedure does not work well.

The reason is that, in Eq. (7.18), we computed A1t using the values of K

vid A at the entry to the boundary layer, since we do not know the valnes of

these parameters for later times. Recall that f2(y, p) = A/(2K) and note that in
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Figure 7.14. Error in Calculating p+ with Eq. (7.18). Since the "average" value
of K over the time interval associated with the separatrix crossing is typically
larger than the value at the entry point, Eq. (7.18) will usually underestimate
the actual change in /u for a given change in p. The two lines shown are not
trajectories, but schematic representations of the map from (p-, y-) to (1+, y+).

Fig. 7.1, D --+ 0 at the separatrix crossing. This implies that 2K/A --+ -o at the

separatrix crossing, hence our value of At cannot be correct. Since 2K/A --+ 00

in the interval of interest, the "average" value of 2K/A will usually be larger than

the value calculated at the entry to the boundary layer. (The possible exception is

if the exit value of 2K/A is much less than the value at entry. We have not found

an example where this occurs.) Thus the value of M+ we calculate in Eq. (7.18)

is smaller than the actual value of p+. This means that the calculated point

(p+, y+) will differ from the actual point as shown in Fig. 7.14.



147

The result is that the final energy yf will be smaller than the actual final

energy, which explains the error seen in Fig. 7.13.

7.5 Euler Integration through the Boundary Layer

As we have seen, the principal difficulty with our inner solution is the fact that

At Au/(y-, y-), since SI(y, p) is not well represented in the boundary layer

by its value at the entrance to the boundary layer. In addition, our decision

to use €- = 0 or 1/2 required us to take a relatively "thick" boundary layer,

thereby perhaps extending the solution farther beyond its range of validity. Re-

call, however, that we introduced the criterion for 0- in order to benefit from

the (apparently) o(e) accurate averaged energy. In this section we use Euler's

integration technique to obtain more accurate trajectories through the boundary

layer.

Now, there are several more or less "exact" methods of obtaining the flow

through the boundary layer. For example, one could integrate the averaged equa-

tions up to the entrance to the boundary layer, then switch to the full system of

equations for the separatrix crossing, finally returning to the averaged equations

at the exit from the boundary layer. This might be called the "best" separatrix

crossing model, since presumably a better estimate would be unlikely. How-

ever, as we have noted above, this method will not accurately follow trajectories

corresponding to particular initial conditions, because of the error incurred by

averaging and the extreme sensitivity to changes in initial phase.

Here we take a simpler approach, making use of the approximate expression for

x(u) in the vicinity of the separatrix, Eq. (7.9). What we need is a relationship

between Ap and Au that is applicable for small intervals of time, so that the

Ap update used above will be reasonably accurate. First, note that Eqs. (7.10)
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and (7.11) imply that

du it A (7.21)
dp p 2e(1 + x(u;k))

where x(u; k) is defined approximately by Eq. (7.9). Thus for small A p = p+- -p-

we obtain

U+ = u- +1 (7.22)

2e 1 + x(u-;k)

where it is understood that this is an approximation. Starting at the entrance

to the boundary layer, we apply Eq. (7.22) iteratively, at each step updating the

slow states as follows. Since the steps are "small," the change in time, At, is

approximately Au/A. Thus the updates for yt and y, are similar to those given

earlier, Eqs. (7.18) and (7.19):

A +  = +(u + - u-) (7.23)

y+ = 2p + - p+ (7.24)

We can now make the following modification to the algorithm developed in

the previous section. Step 5 is changed to read:

5. When € satisfies the above condition, begin iteratively applying Eq. (7.22),

updating the slow states at each iteration.

Also, the updates in Step 6 axe performed using Eqs. (7.23) and (7.24), instead

of the equations given previously.

Since this iterative scheme is essentially a numerical integration through the

boundary layer, we expect it to give a good approximation of trajectories as they

cross the separatrix. In Fig. 7.15, we show a trajectory that gets delayed near

the saddle point. The iterative separatrix crossing model describes the actual

trajectory better than the instantaneous crossing model. To demonstrate the

improvement over the instantaneous separatrix crossing, in Fig. 7.16 we show the

same trajectory in the 1tp plane, contrasted with results from b.1th the instanta-

neous crossing and the iterative crossing model.
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Figure 7.15. p vs. 4iin a Neighborhood of a Separatrix Crossing (6 = 0.0001).
The solid curve is the "exact" trajectory, and the dashed curve was obtained from
the averaged equations, using the iterative separatrix crossing model.
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Figure 7.16. p vs. ii in a Neighborhood of a Separatrix Crossing (C = 0.0001).
This is another view of the trajectory shown in Fig. 7.15. Also shown is the
trajectory obtained from averaging with instantaneous separatrix crossing.
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In Fig. 7.17 we compare the final value of the energy, yf, as a function of the

initial phase, 0, as computed by three different methods: numerical integration

of the full equations, numerical integration of the averaged equations with in-

stantaneous crossing of the separatrix, and numerical integration of the averaged

equations with the iterative separatrix crossing model.

Remark 11 Strictly speaking, it is not the initial phase that affects the separa-

trix crossing, but rather the entry phase, i.e., the phase at which the trajectory

encounters the instantaneous separatrix. Thus, instead of plotting yf vs. Oo, per-

haps we should plot yf vs. 0-. However, recall that Eq. (6.52) states that the

initial phase appears as an additive constant to the solution of the fast equation.

Thtis, Oo - 0- = CONST for a given initial polhode. Also, from Fig. 7.11 and

the discussion of p*, we know that the trajectories that pass closest to the saddle

are those that pass near the entry point (4, p) = (0, -p*/ 2 ). Thus, there is no

additional information to be gained by plotting yf against 0- instead of 00.

7.6 Conclusions

The crossing of the frozen separatrices of the unperturbed system by trajectories

of the perturbed system corresponds to a resonance condition in the unaveraged

equations, Eqs. (6.32)-(6.34). In this chapter, we investigated this resonance for

the flat spin recovery problem. We obtained a very accurate approximate solution

for the thickness of the boundary layer, or resonant zone, using an expansion of

the e = 0 solution near the separatrix. We also obtained a reasonably accurate

approximation for the flow through the resonance, by patching the numerical

solutions to the averaged equations through the resonant zone using Euler inte-

gration. A "one-step" separatrix crossing model was developed as well; however,

it fails because we cannot predict the length of time the trajectory spends near

the separatrix. It may be that this approach can be improved by developing an

accurate estimate of the time spent near the separatrix.
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Figure 7.17. Comparison of Separatrix Crossing Model with Exact Solution and
Averaging Solution for . = 0.001, (i2 ,i 3 ) = (-0.3,-0.7). The final energy
yf(p = 1) is plotted against the initial phase O0. Note that the iterative sep-
axatrix crossing model captures the qualitative features of the actual system.
However, due to the error incurred in averaging, and the sensitivity to small
changes in initial conditions, we cannot accurately approximate trajectories that
cross the separatrix. Cf. Figs. 7.13 and 6.4.



Chapter 8

Exact and Approximate Solutions to

the Averaged Equation

In Chapter 6 we saw that numerical solutions to the averaged equation

9 = -22 (8.1)

accurately describe the dynamics of the slow variables as long as the resonance

zones are avoided, and are reasonably accurate even in some of the passage

through resonance cases. For this reason, it is worthwhile to seek approximate

analytical solutions to the averaged equation. In this chapter, we develop an

approximate solution f-r oblate spinup, and solutions for two of the legs of flat

spin recovery. These approximations compare quite well with exact solutions of

the original equations, as shown in representative plots.

We begin by enumerating all of the exact solutions to the averaged equation

for oblate gyrostats. (We do not discuss intermediate gyrostats in this chapter.)

Then these solutions are used as a base for a further perturbation analysis to

obtain approximate solutions. The basic idea is to first show that the solid

curves in the py plane (see Fig. 4.6) are exact solutions to Eq. (8.1). Then we

define a local coordinate, , representing the perpendicular distance from an exact

solution in the py plane. Expansion of Eq. (8.1) in a Taylor series in then yields

153
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an equation which may be solved using an ordinary perturbation approach.

8.1 Exact Solutions

In this section we show that the solid curves, O,,, P,,, and F,, are exact solutions

to the averaged equation. We begin with the simplest case, O., or y = -2y.

As we noted in Table 5.3, the repeated root of the gyroscopic function along

O, is a = b = 1, with the result that x = 1 for e = 0. Since Op is an equilibrium

point for the perturbed system as well as for the unperturbed system, we expect

that 2 = 1 at O. as well, and this is in fact the case. This follows easily from

a = b = 1, since this implies a 2 = a2 = 0, which, when substituted into

Eq. (6.42), gives $ = 1. This in turn implies i' = -2, or = -2(p - I0) + yo.

Since any initial condition (Yo, P0) satisfying yo = - 2yo gives = -2y, Op is an

integral curve of the averaged equation.

The argument that P. is an exact solution to Eq. (8.1) is identical to the

argument for O. However, we must keep in mind that when P,. is a saddle point,

it represents (in the py plane) both the equilibrium point and the separatrices of

the unperturbed system, since they share the same value of the energy y.

For the flat spin equilibria, F, the exact solution is y- = -(p 2/i 3 + i3 ),

with repeated root a = b = p/i6. (Recall that this branch of unperturbed

equilibria is not a solution to the perturbed system.) This trajectory passes

through two regions: Region 2 and Region laiii. In Region 2, the repeated root

leads to / = A/i3, a = al = P = 0. Substituting these values into Eq. (6.47)

gives t = p/i3. (This calculation must be done carefully, as a = 0 appears in

the denominator of Eq. (6.47).) Using this value of t in Eq. (8.1), we obtain

= -(," 2 /i3 + i3 ) for any initial condition starting on F,.

Remark 12 The fact that F, is an exact solution to the first-order averaged sys-

tem has an important implication regarding the use of our approach to obtain an

estimate for the residual cone angle at the conclusion of spinup (see Section 4.5).



In the unaveraged system, Eqs. (3.25)-(3.28), solutions starting exactly at the

all-spun flat spin equilibrium point move away from F, by an amount depend-

ing on e. Because F,, is an exact solution of the first-order averaged equations,

first-order averaging cannot be used to determine how this effect depends on e.

Thus, to derive a relationship between e and 77 for recovery from exact flat spin

(see Appendix A), the averaging process would need to be extended to O(e2). This

would increase the complexity by introducing incomplete elliptic integrals of the

third kind.

Since k 2 = 0 for the exact solutions corresponding to centers on the momen-

tum sphere, we will also use a small modulus assumption in our perturbation

approach. This assumption, however, is not uniformly valid, due to the singular

points P, 2 and P.3. In Fig. 8.1, we show curves of constant modulus for two

different values of k2 = CONST. It is evident that the small k2 assumption is

more appropriate near 0, and near F, in Region 2. However, in Region laiii,

the modulus increases "faster" as one moves away from F. Similar comments

are applicable to P. in Region laii, and to P,, for #L > 13.

8.2 Oblate Spinup

The oblate spinup problem is discussed in detail in Section 4.5, and trajectories

are shown in Fig. 4.10. As shown in the previous section, the line O, (or y =

-2p), is an exact solution to Eq. (8.1). We will also use the fact that the modulus

satisfies k2 = 0 along O,, and is "small" near O,,. Oblate spinup trajectories lie

entirely inside Region lai, and, as shown in Fig. 4.10, are approximately straight

lines. In Region lai, t is given by Eq. (6.42), which we repeat here for convenience:
t3{r(a2-_a2)[1 - Ao(V,k)]}

a2 ( + 2 (~ (8.2)

where

,b = sin- I(1 - a 2 )/(1 - k2 ) (8.3)
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Figure 8.1. Constant Modulus in the py Plane for (i2, i3) (-0.3,-0.9). In (a)

we show curves of V2 = 0.5 in the upper half of the plane, and in (b) we show
V 2 = 0.1. Points between the dotted curves and the solid curves correspond to
"small" k2 , and points between the dotted curves and the dashed curves corre-
spond to "large" V2 . Note that in almost all of Region laiii k2 > 3.1, whereas
in Regions lai, laii, and 2, the domain of Vs < 0.1 is reasonably large. Note the
different scale for p in (b).



157

b (8.4)

a2  _ a-b (8.5)a-c

2 Ca = -a (8.6)
b

k - (a - b)(c- d)

(a-c)(b-d) 
(8.7)

and a = r-, b = rc= +, and d r+ are the roots of the gyroscopic function,

given by

r2 = /2 +i3(i3+y) (8.8)
i3

'q± Vt2 +i 2 (i2+ Y)
r3 = i (8.9)

All of these quantities are taken from Chapters 5 and 6, and it is evident that

each parameter depends only on y, u, and the inertia parameters i2 and 13.

Note also that a2 and a, are both 0(k 2), and we can write them as

2  01 = k2 (8.10)
2 -. C 2-2

= k (8.11)

where

2 -- > 1 (8.12)

since b> c> d.

Before we do the required calculations, we outline the procedure to be fol-

lowed. First, noting that k2 = 0 when = 0, we expand the elliptic integrals in x

as power series in k , making use of the series developments given in Appendix D.

Next, referring to Fig. 8.2, we define the local variable by

= y + 2/ (8.13)

Thus is perpendicular to O, and = 0 corresponds to the exact solution

y = -2p. Then we expand ± as a power series in , to say O( ), i.e.,

S= 1-f(/) + O( 2) (8.14)
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Figure 8.2. Local Perturbation Coordinate for Oblate Spinup. is perpen-
dicular to O, where the modulus satisfies k2 = 0, and k2 is small for small .

Cf. 8.1.



159

where we have used the fact that 2 = 1 when = 0. Differentiating Eq. (8.13)

with respect to y, and applying Eqs. (8.1) and (8.14), we obtain

= 2f (p) (8.15)

where we have truncated the 0( 2) terms. This equation is separable and leads

to

S= 0exp 2 of(A)dA} (8.16)

where o = (0) = yo + 2po. Rewriting and O in terms of y, p, yo, and po, we

obtain

,(y ) = -2p + (Yo + 2o)exp 2 j f(A)dj (8.17)

where the subscript a denotes that this is an approximate solution. This con-

cludes the outline of the procedure. As a final note, we point out that the

evaluation of f(p) is quite complex. Most of the calculations were done using

the symbolic programming languages MACSYMA [85] and Mathematica [105],

with some "manual" assistance to circumvent the problem areas we discuss in

Section 8.4. We now carry out the calculations necessary to obtain f(p), and

ultimately g,( (A).

In order to expand Eq. (8.2) as a power series in k2, we need the series

representations of K(k) and Ao(4, k), as developed in Appendix D. Keeping

only terms of 0(k 2), we repeat the series here for convenience:

K(k) = 2r(1-4k ) (8.18)

Ao (0~, k) = sin k (1 - 1 k2) (8.19)

where it is understood that the series are valid to 0(k 2).

Since 0 and k are functions of y and p, then so is A0. Making use of Eqs. (8.3)

and (8.10), we can write A0 as

Ao1(y,) 1 - k2 (8.20)
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Using this version of A0 , we can write t as a function of k2 , b, c, and a 2, all of

which are functions of the four roots of the gyroscopic function:

a (- c/b) [_ .Uk2( k2/4)](.1=/3 1 - k2/4)- a-k) - (.)

The next step is to use the definition of , Eq. (8.13) to put y = - 2Ai in a,

b, c, and d, wherever they appear in t, using Eqs. (8.4)-(8.7). This is a lengthy

calculation, and was performed using Mathematica. Once this step is completed,

we have an explicit expression for t in terms of the variables P and only. We

then expand t in a Taylor series in , keeping only terms of 0( ), which gives

{ 1 - i3)(2i 2i 3 - (i 2 + i3)p) (8.22)
S= 1-_ 2(y - i 2 ) 8(p - i 2 ) /i3(P - i 2 )(i 2 P - i 2 i 3 ) 8

This approximate expression for t explicitly defines f(p) in Eq. (8.14): f(y) is

the coefficient of .

Now, knowing f(1), we can evaluate the integral in Eq. (8.16), and substitute

the result into Eq. (8.17) to obtain:

9.(p) = -2p + (yo + 2o) (A -i 2 ) x (8.23)
{P0 - i2

Si2)(0 - i3) /(p - i2)(p - i3)J

For initial conditions starting near O, Eq. (8.23) gives an accurate trajectory in

the py plane. It is also evident that if yo = - 2po, the exact solution y = -2p

is obtained. Some comparisons are shown in Fig. 8.3, showing that the error

increases with increasing distance from the line O, as expected.

8.3 Flat Spin Recovery

For flat spin recovery, the trajectories pass through three regions of the py plane,

Regions 2, laiii, and lai, as explained in Section 4.5 and shown in Fig. 4.13. In

this section we obtain approximate solutions for 9(y) in two of these regions:
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Region 2 and Region lai. The reason for not treating Region laiii is discussed in

Section 8.4.

8.3.1 Region 2

For Region 2, the procedure is similar to that for Region lai for oblate spinup;

however, since F. is quadratic in p, the details are different. The local coordinate

in this case is defined by

(- - ( ) + i3 (8.24)

which is perpendicular to the curve FO in the py plane, as shown in Fig. 8.4.

1 .5 y

= -y- (M2 /i 3 +i 3 )

FA,

1

0.5

U/

0

0 0,2 0.4 0.6
Figure 8.4. Local Perturbation Coordinate for Flat Spin Recovery in Region 2.

is perpendicular to F,, where the modulus satisfies k2 -0, and k2 is small for
small .



163

When = 0, x = A/6, so we expect to find

= + f( ( O ) (8.25)
23

In Region 2, t is given by Eq. (6.47), and the parameters are defined at Eqs. (5.19)-

(5.24). Making use of the series representation of II(&2, k) derived in Appendix D,

and performing similar calculations to those done in the previous section, we we

obtain the 0( ) approximation

=: + A (8.26)
i3 2(pt2 - - 2 )

As before, differentiating Eq. (8.24) and substituting Eq. (8.26) into the result

gives

ds -
(8.27)

to O( ). This equation is easily solved to obtain '(M), after which Eq. (8.24)

leads to the approximate solution:

)+ i3 + yo + iA-p + i3 (8.28)

Some sample comparisons are shown in Fig. 8.5. Again, the agreement is quite

good for trajectories reasonably close to the exact solution F., and as expected,

the exact solution is obtained for initial conditions starting on the curve F.

8.3.2 Region lai

In Region lai for flat spin recovery, the procedure is exactly the same as for oblate

spinup. The only difference is that the perturbation is from P. (i > -i 3 ) instead

of O.. Thus the local coordinate is

= 2A - y (8.29)

Omitting discussion of the lengthy calculations, the resulting approximate solu-

tion is

9.(p) = 2p - (21to - yo) A + 2 exp {F(p) - F(po)} (8.30)PO + i2
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Figure 8.5. Comparison of Approximate and Exact Solutions to the Averaged
Slow Flow in Region 2 for Flat Spin Recovery for (i 2, i3 ) = (-0.3, -0.7). The
approximate and exact solutions are shown for three different initial conditions
(marked by dots). Referring to Fig. 8.4, we note that the approximation is
increasingly accurate as - 0.
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where

= (i 2 - i3)9 (8.31)

2 i2i3 (v + i2)(p +i3)

Note that this solution has a singularity at it = -i 3 , which is the value of i

at which the bifurcation PA3 occurs. This may be understood by recalling that

k2 = 1 along P. when P. is a saddle point, whereas our development explicitly

uses a small modulus assumption. Comparisons between exact and approximate

solutions are shown in Fig. 8.6.

8.4 Difficulties in Region laiii

We were unable to obtain an approximate solution in Region laiii due to diffi-

culties encountered with the symbolic programming languages MACSYMA and

Mathematica and differentiation of functions involving square roots of the inde-

pendent variable. Note that t involves many square roots through its dependence

on the roots of the gyroscopic function, which depend on y and U, Eqs. (8.8)

and (8.9). Thu,, when the substitution y = - - (p 2 /i3 + i3 ) is made, ap-

pears exclusively as the argument of square roots. Because of this aspect of 's

dependence on , obtaining a Taylor series about = 0 must be done carefully.

Consider the following example: Suppose one has the function

g(x) = /(a - b)2 + x (8.32)

for which the correct Taylor series, about x = 0, is

g(x) = Ia - bI + O(x) (8.33)

Using MACSYMA's TAYLOR function to compute the Taylor series gives

g(x) = b - a + O(x) (8.34)

which is only correct if b > a. Furthermore, putting a = c in g(x) causes MAC-

SYMA to answer

g(x) = c - b + O(x) (8.35)
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Figure 8.6. Comparison of Approximate and Exact Solutions to the Averaged
Slow Flow in Region lai for Flat Spin Recovery for (i2 , i) = (-0.3, -0.7). The
divergence of the two solutions is due to the fact that the small k2 assumption is
not as applicable in this region (d. Fig 8.1), and to the singularity in Eq. (8.31)
at p = -i 3 . As o --+ 0 and po becomes "sufficiently" greater than -i 3, the
accuracy of the approximation increases.
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which is only correct if c > b, or, since c = a, a > b, which disagrees with the

previous response. Incredibly, the answer depends on the alphabetical order of the

variables.

While Mathematica does not commit this error, it does have a tendency to

rearrange expressions according to some internal rules. One rearrangement that

causes problems with the kind of calculations we have been performing is the

following: whenever Mathematica encounters an expression like v-a, it replaces

it with iv/.

We were able to overcome these difficulties for the problems we did solve, by

manually performing difficult parts of the calculations. However, for Region laiii,

the intermediate expressions were large and we were unable to simplify them

sufficiently to obtain a solution.

Note also that the small k2 assumption is not as applicable in Region laiii as

in Region 2. Thus an approximate solution using 0(k 2) approximations would

not be as accurate as the Region 2 solution.

8.5 Conclusions

Perturbing off of exact solutions to the averaged equation leads to approximate

solutions for the slow evolution of the energy, y, during spinup. These approxi-

mate solutions are very accurate for initial conditions near the appropriate exact

solutions. The techniques used here should be applicable to other problems lead-

ing to averaged equations involving elliptic integrals.

The difficulties we encountered with differentiating square roots could prob-

ably be resolved by developing routines to manipulate such functions, especially

to calculate the Taylor series.



Chapter 9

Summary and Conclusions

In this chapter we give a brief summary of the results obtained in the thesis,

followed by further discussion of some of the problems which remain to be solved.

9.1 Summary

We have studied the dynamics of rigid axial gyrostats when the angular mo-

mentum of the rotor about its symmetry axis is increased by the application of

a small constant internal torque, c. We have shown that this four-dimensional

problem can be reduced to a one-dimensional problem by exploiting conservation

of angular momentum and applying the method of averaging. This reduction re-

sults in a single first-order non-autonomous ordinary differential equation for the

slow evolution of kinetic energy during spinup. This slow flow equation involves

complete elliptic integrals of the first, second, and third kinds. While it cannot

be solved analytically, one advantage of the averaged equation for the slow flow is

that the required step size for numerical integration is independent of e, whereas

for the full system of equations, the required step size decreases as e decreases.

Hence for small c, where the averaged equations are most applicable, numerical

integration of the slow flow equation is more efficient than for the full system.

Previous studies of spinup dynamics have used the full four-dimensional flow,
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and have subsequently been restricted either to particular classes of gyrostats,

or to particular regions of phase space. In this work, however, we have given a

unified treatment for all axial gyrostats. Our ability to do this was enhanced

by our discovery of a previously unknown symmetry relating oblate and prolate

gyrostats, thereby reducing the number of cases which must be considered.

While averaging works well almost everywhere, the phase space of the system

contains resonant zones where the frequency of the unperturbed system vanishes,

and hence the averaged equations are not valid in these regions. These resonant

zones correspond to regions of phase space where the trajectories of the perturbed

system cross the frozen or instantaneous separatrices of the unperturbed system,

and are easily identified in terms of our one-dimensional representation of spinup

dynamics. For most trajectories, the averaged equation provides an acceptable

approximation of the exact flow, ei en if an instantaneous separatrix is crossed.

However, for some trajectories that pass very close to the saddle point, the error

is significant. An important observation is that the 0(c) error incurred in av-

eraging implies that no separatrix crossing model can accurately predict how all

trajectories will cross the separatrix.

In our investigation of the separatrix crossing problem, we obtained an ap-

proximate solution for the change in energy associated with a change in phase for

the flow near these instantaneous separatrices, and used this solution to obtain

an accurate formula for the thickness of the resonant zone, or boundary layer.

An Euler integration technique, using the c = 0 solution in a neighborhood of

the separatrix, was used to connect the averaged solutions across the separatrix.

This technique gives results that agree qualitatively with the exact solutions.

Since the averaged equations provide an accurate approximation for the flow

outside of the resonant zones, but are not explicitly integrable themselves we

obtained approximate analytical solutions to the averaged slow flow equation.

These solutions are reasonably simple and quite accurate for trajectories which
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remain near the equilibrium points of the unperturbed system. The calculations

involved, however, are not simple, and we were unable to obtain approximate

solutions in some cases.

9.2 Approximate Solutions of the Averaged Equations

As noted in Section 8.4, we were unable to obtain an approximate solution to

the averaged slow flow equation for flat spin recovery in Region laiii, due to dif-

ficulties with the computer algebra systems we used. If these difficulties could be

resolved, and solutions were obtained for Region laiii, then it would be possible,

in principle, to patch the solutions in Regions 2, laii and lai (near P,) together

to obtain a complete analytic approximation for flat spin recovery. The central

problem with connecting these solutions will be dealing with the singularity at

the bifurcation value p = p3 (cf. Eqs. (8.30) and (8.31)).

Similar solutions could be obtained for intermediate spinup. However, for pro-

late spinup, this procedure is not likely to work. Recall that for prolate spinup,

small torque means large cone angle after the separatrix crossings (cf. Fig. 4.12).

This means that for -mall e, the post-separatrix crossing prolate spinup trajecto-

ries are not near any of the unperturbed equilibrium points. Therefore perturbing

from the unperturbed equilibria is not applicable. In the case of large torque,

the trajectories do remain near the equilibrium point PA; however, the averaged

equations are not expected to be valid for large e. Hence we do not expect the

method to yield valid results for prolatt spinup.

9.3 Separatrix Crossing

As we discussed in Section 7.1, the separatrix crossing problem has generated

much interest over the past two decades. A useful result obtained here is the ac-

curate formula for the "thickness" of the last cycle before the separatrix crossing.

This formula was based on an approximate solution for the energy for a given
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change of phase near the separatrix. While this solution describes how the energy

changes, it gives no clue as to how much time is spent near the separatrix. What

is needed to complement our inner solution is a relationship between the change

in phase, Au, and the change in time, At. Assuming such a relationship can be

developed, one would be able to accurately connect the averaged solutions across

the separatrix.

9.4 More General Gyrostatic Problems

We have focused on axial gyrostats, which possess a unique symmetry due to the

alignment of the rotor axis with t principal axis of the platform. This symmetry

is evident in the topology of the polhodes on the e = 0 momentum spheres

(cf. Fig. 4.3). In the py plane, this symmetry means the curves F. and U. each

correspond to two equivalent branches of equilibria on the sphere.

What happens when we break this symmetry? That is, what if the rotor's axis

of symmetry is not aligned with a platform principal axis? In this case, it is easy

to verify that the moment of inertia tensor is still constant, and that the 6 = 0

integrals corresponding to conservation of angular momentum, conservation of

kinetic energy, and conservation of axial angular momentum of the rotor are all

constants of the motion. Thus the c = 0 motion corresponds to constant energy

polhodes on the momentum sphere, just as in the axial case. On the momentum

sphere, the effect of breaking the symmetry is to change the pitchfork bifurcations

we discussed in Chapter 4 to saddle-node bifurcations (see Ref. [26, pp. 146-149]).

In fact, Wittenburg [103] has shown how to reduce the equations of motion to

an elliptic integral in this case; however, the integral is more complicated than

for axial gyrostats, and he did not invert the integral to obtain solutions for

the angular momentum variables as functions of time. If these solutions can be

explicitly obtained, the techniques developed here can readily be extended to this

more general case.



Appendix A

Gebman and Mingori's Work

The flat spin recovery problem has received some attention in the literature. The

work that is most similar to this thesis is the paper by Gebman and Mingori [231,

published in 1976, which is based on Gebman's Ph.D. thesis [24]. Since their

work is relevant to our treatment of flat spin recovery, we devote this appendix

to a discussion of their approach and results.

First, we point out the fundamental difference between the problem they

investigated and the problem considered here. In their treatment, the initial flat

spin condition is ezactly at flat spin, that is to say,

(xl,x2, X3, u) = (0,-±1,0,0) (A.1)

which corresponds to the point (A, y) = (0, -i 3 ) in the My plane in Fig. 4.13.

Conversely, in our treatment the initial conditions are essentially arbitrary. To

apply the asymptotic approximations obtained in Chapter 8, the initial condition

should be "close" to flat spin, but not necessarily on the equilibrium point. Also

we provide a unified approach to dealing with all spinup problems, not just the

flat spin recovery problem.

In the analysis of [23]-[24], the authors dealt directly with the angular mo-

mentum variables, in a dimensionless form somewhat different from that used

here. The relationships between their variables and parameters and those used
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Table A.1. Original Parameters

Parameter Gebman Hall

Moments of Inertia

Maximum I1 + K 1  12

Intermediate 12 + K 1  13

Minimum 13 + K3 I,

Platform (Axial) 13 I,

Rotor (Axial) K 3  is

Angular Momentum (Ii + K 1 )S h

Axial Torque L ga

Time T i

Note that Gebman's rotor is aligned with the 3-axis

whereas ours is aligned with the 1-axis.

in this thesis are given in Tables A.1-A.4. They used a two-scale expansion to

obtain approximate analytic solutions for the angular momenta in the domains

corresponding to Regions 2, laiii, and lai (see Figs. 5.4 and 4.13). To get across

the separatrix, they stretched time and obtained a parameter-free second-order

differential equation with time-varying coefficients for the motion through the

resonance (see Remark below). They then numerically integrated this equation

and matched the result to the two "outer" solutions.

They ran several comparisons for different values of the parameters, with

varying degrees of success. For example, in his thesis, Gebman noted that "the

errors do not seem to follow any particular pattern," giving as an example a case

where the "percentage error in the asymptotic estimate ... 'jumps' from -11.8

percent to -1.7 percent for only a 3 percent increase in c." [24, p. 1511.

He also devoted a section of his thesis to "The Phase Difference Problem,"
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Table A.2. Dimensionless Parameters

Parameter Gebman Hall

Inertia A -' -I)3 22 = 1 - Ip/I2

V (I+2 Kl)(Ii+KI-I3)

i3 = 1 - Ip/I3
L(I2+Kl) 2 avh

Torque EG = (Ii+K i_)(iii2)fgp

Time t = aT t= h/I

a P 1) (1 +Ki

di= a/S1

discussing the fact that the phase of the asymptotic approximation differed signif-

icantly from the exact solution as represented by numerical integration of the full

equations. He hypothesized that for smaller e this discrepancy would disappear.

However, as we have seen in Chapter 7, the passage through resonance can

be quite sensitive to small changes in either the initial conditions or e.

Remark 13 The "parameter-free" differential equation obtained by Gebman and

Mingori is

d2y 1 y + Ty = 0 (A.2)

in which r is a time-like variable obtained by scaling the "original" time. Patching

numerical solutions of this equation to the analytical approximations obtained for

the "outer" regions involved patching the asymptotic initial conditions as r --

-00 and the "post-resonance" conditions as T --* +o0.

In an unrelated paper by Haberman [29], a similar equation is identified as

the "second Painlev6 transcendent" (cf. Ince [40, pp. 345-355]), and he uses

matched asymptotic expansions to obtain the asymptotic behavior of this equation.

A possible extension of Gebman and Mingori's work would be to apply Habermans

findings to Eq. (A.2).
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Table A.3. Relation Between the Dimensionless Parameters

Gebman Hall
=, -i 3 i t

i2(i- i3 ) i3 -(A2)i3-
1 -i2 + A

G- 62A2C G

C- i2(i2 -i 3) -

Table A.4. Gebman's Auxiliary Parameters

G=0.880 G = 0.880(1 - i2) i
i2(i2 i3)

BAIR = /t BAIR= 1 - i2112 IDRK22

IDR= IK--2 IDR - i2 -i3
12 + K1 1 - i2

BAIR = Bearing Axis Inertia Ratio

IDR = Inertia Distribution Ratio



Appendix B

The Inertia Parameter Space

In Chapter 3 we stated without proof that the triangle inequalities for moments

of inertia lead to restrictions on the dimensionless inertia parameters i2 and i3 as

illustrated in Fig. 3.2. In this appendix we carry out the calculations that lead

to Fig. 3.2 and the equations for the boundary curves, Eq. (3.43).

The triangle inequalities for a rigid body's moments of inertia are

I1+12 > 13 (B.1)

12 + 13 > I1 (B.2)

where the Ii (j = 1,2,3) are the principal moments of inertia. These follow

directly from the definitions of the principal moments of inertia as follows. The

principal moments of inertia may be defined as integrals over the body, e.g.,

=,=(r + r)dm (B.4)

where r2 and r3 axe the projections onto the principal axes el and e2 of a position

vector r which points to the element of mass din. The moments of inertia 12 and

13 are similarly defined. Then

I1+12= J(r + r + 2r )dm (B.5)
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or

Ii + 12 = 13 + s 2r3dm (B.6)

Since all the quantities involved are real, Eq. (B.1) is proved. The other two

inequalities follow by permuting the indices.

Now,our dimensionless inertia parameters are defined by

ij = 1 - Ip/Xj, j =1,2,3 (B-7)

from which we can write

Ij = Ip(1 -ij), j = 1,2,3 (B.8)

Note that since Ij > 0 and Ip > 0, it follows from Eq. (B.8) that 1 - ij > 0, or

i1 < 1. Substituting Eq. (B.8) into Eq. (B.1), then simplifying and rearranging,

we obtain
1 - ill2

Z3 < -(B-9)
3 2 - ii - i2

This inequality defines the bounding curve (III) in Fig. 3.2, reproduced here in

Fig. B.1(a). Note that since il < 1 and i2 < 1, this curve has no singularities

in the domain of interest. Also, a simple L'H6pital calculation shows that the

asymptote as i2 --+ -o0 is i3 -+ il.

A similar calculation using Eq. (B.3) leads to the curve (II). However, this

can also be obtained by Symmetry 1, obtaining

1 - ii 3
Z2 < 2 - i1 - (B.10)

Solving this inequality for i3 gives

2i 2 - i1 i2 - 1i3 > 2- l(B. 11)
22 - 11

which defines bounding curve (II), shown in Fig. B.1(b).

Finally, substituting Eq. (B.8) into Eq. (B.2), we obtain

1 + ii2 - 2il
13 > i2 - il if il > i2  (B.12)

1 + ilit - 2ii3 < i2 -il if il <i 2  (B.13)

..2. .... .2..1.. .. .. ... .... .. .
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(a) i (b) i3

Inadmissible II ___ U1 I ._.

0i 0lLA

-2 -21 UI

-4 -4 ((iii as i3---)

-4 -2 0 -4 -2 0

Figure B.1. Bounding Curves (III) and (II) in the i 2 i 3 Plane. (a) Curve (III),
defined by Eq. (B.9), for ii = 0.3. (b) Curve (III) and Curve (II), defined by
Eq. (B.11), for iI = 0.3.

There is a singularity evident at il = i2. However, the second branch is inapplica-

ble, since Eq. (B.9) gives a stronger upper bound for i3, as shown in Fig. B.2(a).

Thus the bounding curves in Fig. 3.2 (and the figures that follow) are defined

by Eqs. (B.13), (B.11), and (B.9). It is evident in these expressions that the extent

of the admissible region depends on the value of il. As we noted in Section 3.4,

il = Is/II, hence 0 < il < 1, with the limits il = 0 and il = 1 corresponding

to gyrostats with rod-shaped rotor (I. = 0) and rod-shaped platform (Ip =

0), respectively. Thus the ili2i3.parametcr space is a three-dimensional space

bounded above and below by the planes il = 0 and il = 1. Between these planes

the space is bounded by the curves defined by Eqs. (B.13), (B.11), and (B.9).

In Fig. B.3, we show the i2 i3 plane for several values of i1 . Qualitatively,

there are two possibilities:

1. In case i1 < 1/2, all four quadrants of the plane intersect the admissible

region. Hence all three types of gyrostats are possible.
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(a)__ (b) is

0 is 0In ir

Ob 
In

-2 -2 Ob = Oblate H

Pr a Prolate l

In - Intermediate

-4 -4

1 is inapplicable branch of I

-4 -2 0 -4 -2 0

Figure B.2. Bounding Curves (III) and (II) in the i2 i3 Plane. (a) Curve (III),
defined by Eq. (B.9), for ii = 0.3. (b) Curve (III) and Curve (II), defined by
Eq. (B.11), for iI = 0.3.

2. For il = 1/2, curve (I) passes through the origin of the i 2i3 plane. Therefore,

oblate gyrostats are not possible for il ! 1/2.

In the limit il --+ 1, the bounding curves approach the straight lines i3 = 1,

Z2 = 1, as shown in Fig. B.3(d).
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(a) 6 (b)

12 0

-2 -2

-4 -4- I

-4 -2 0 -4 -2 0

(c) (d)
is is

-2 -2

-4 -4

I , I * I , ,i , I , .

-4 -2 0 -4 -2 0

Figure B.3. The i2i 3 Plane for Several Values of i1. In (a), i = 0, which
corresponds to a single rigid body, or equivalently a gyrostat with a rod-shaped
rotor. In (b), i1 = 0.5, wlhch is the critical value above which oblate gyrostats (as
defined in Chapter 3) are not possible. In (c), i1 = 0.9, and in (d), il = 1.0. This
is the limiting case of a rod-shaped platform, and also corresponds to a single
rigid body.



Appendix C

Inversion of Elliptic Integrals of the

First Kind

The c = 0 solution given in Chapter 5 is found by evaluating the elliptic integral of

the first kind given at Eq. (3.64), and inverting the result to obtain an expression

for the angular momentum x as a function of time in terms of Jacobi's elliptic

functions. In this appendix, we, give the details of the calculations involved and

discuss one possible pitfall.

To begin, we choose the general case of Region la as defined in Chapter 5,

Table 5.2, and Fig. 5.4. For this case, the four roots are real with a >_ x > b >

c > d. Referring to Byrd and Friedman [10], either of Eq. 256.00 or Eq. 257.00

is applicable. The difference between the two formulas is that for Eq. 256.00,

a > x > b, while for Eq. 257.00, a > x > b. Of course, x generally takes on

all values on the closed interval [b, a], so the distinction does not at first appear

important. The two solutions are different, however, in the limiting case where

k2 = 1, i.e., motion on the saddle and its separatrix. The sepaxatrix condition

for this case is characterized by a E (2, p3) with energy level y = 2p. From

Table 5.2, one may see that this corresponds to b = c = -1. At this energy

level, there are three distinct trajectories: the two homoclinic orbits (which are
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equivalent by symmetry), and the saddle point itself. As will be shown below,

Eq. 256.00[10] reduces to the saddle point in the limiting case, while Eq. 257.00[10]

gives the separatrix. For k2 # 1, the two solutions are equivalent.

First we repeat Eq. 256.00[10], using our notation:

lb d= gsn- '(sinV;,k) (C.1)Vb (a - ) -b)( - c)( - d)
= g F(O, k) (C.2)

where

9-2 (C.3)

= (a-c)(b-d)

= sin- (a- c)(x- b) (C.4)~ (a si- b)( - c)

k = (a- b)(c- d) (C.5)
(a-c)(b-d)

and F(O, k) is an incomplete elliptic integral of the first kind. We wish to use

this formula to evaluate Eq. (3.64), repeated here for clarity:

t = (t d (C.6)
t=JX(o) V/i2i3(a - )( - b)( - c)( - d)

Remark 14 Note that the quartic under the radical in the integrand of Eq. (C.6)

is not a monic polynomial, i.e., the coefficient of the highest order term is not 1.

In the treatment given by Leimanis [56] this fact was overlooked. In going from

Eq. 16.31[56] to Eq. 16.37[56], the coefficient equivalent to i2i3 was dropped.

At any rate, Eq. (C.6) becomes

V?23t = I'(o) V(a - ) -b)( - c)( - d) (.7

where now the right-hand side is almost in the form of Eq. (C.1). Since the lower

limit of Eq. (C.1) is fixed at x = b, the integral in Eq. (C.7) must be separated

into the sum of two integrals, viz.

2 t =W() + () (0.8)
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where W( ) is the quartic in Eq. (C.7), which we have called the gyroscopie

function, following Leimanis [56].

Applying Eq. (C.1) gives

Vt= g[-sn-(sino, k) + sn-(sink, k)I (C.9)

where Oo and O are given by Eq. (C.4) with x = x(0) and x = x(t), respectively.

Rearranging gives

u = sn- 1 (sin k, k) (C.10)

where

u = At +uo (C.11)

uo = sn-(sin4o,k) (C.12)

A - Z i2i 3(a - c)(b - d) (C.13)g 2

Solving for x(t) = x(u; k) gives
x(u;k) -b(b - c) + c(a - b)sn 2(u; k) (C.14)

(a - c) + (a - b)sn 2 (u; k)

The method of averaging (Chap. 6) requires that we integrate this expression

over the period of x(u; k) in u, which results in a complete elliptic integral of the

third kind. Thus, it is convenient to write x(u; k) in the form used in Ref. [10]

(e.g., Eq. 410.06[10]):

x(u;k) = b{ 1 -  sn (u;k)} (0.15)1 -a2sn2(u; k) (15

with a 2 = (a - b)/(a - c) and a2 = cc2/b.

At the saddle and along the separatrix for Case la, the two roots b and c are

equal: b = c = -1, from which al = a2 , and x(u; 1) = -1. That is, the solution

obtained from Eq. 256.00[10] gives the saddle point in this limiting case.

Another way to see this is to note from Eqs. (C.1) and Eq (C.10) that

F(O, k) = u, and from Eq. (C.4) that b = c =* 0 = r/2. Furthermore,

F(7r/2, 1) = K(1) = cc. So, at the separatrix energy level, u = cc, and since A
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is bounded and non-zero, this implies t = o. Thus, since the separatrix is the

stable (and unstable) manifold of the saddle, t = ±oo corresponds to the time at

which the separatrix reaches the saddle point.

Applying Eq. 257.00[10] in the same manner, one obtains

x(u; k) = a 1 2 n 2 k) } (C.16)

with a2 = -(a- b)/(b-d) and Q2 = da2/a. The separatrix condition b = c = -1

does not give a 2 = a2 in this case, thus x(u; 1) varies with u, following the

separatrix.

Finally, we note that the parameter, a 2, has a different range for the two

solutions: Eq. 256.00[10] gives 0 < P < Q 2 < 1, while Eq. 257.00[101 gives
Q2 < 0. These in turn lead to two different forms for the complete elliptic

integral of the third kind (compare Eq. 410.06 and Eq. 412.06[10]).



Appendix D

Expansion of Complete Elliptic

Integrals

In developing the approximate solutions to the slow flow equation in Chapter 8,

it was necessary to expand the various elliptic integrals in Taylor series for small

modulus, k, and, for the integrals of the third kind, for small parameter, a 2.

In this appendix, we develop the required series for the complete integrals of the

first and second kinds, and for two versions of complete elliptic integrals of the

third kind.

The basic idea here is to expand the integrand of each integral in an appropri-

ate Taylor series, and then integrate the series. The expansions for the integrals

of the first and second kinds are available in Ref. [101, and we simply repeat them

here for convenience. However, the expansions for the integrals of the third kind

were not available in a convenient form, and we give the details of their derivation

here.

In all cases, we carry the series to 0 (k4), or to 0 (02 ).
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D.A Complete Elliptic Integral of the First Kind

The complete elliptic integral of the first kind is defined by Eq. 110.06 of Ref. [10]:

K(k) = f[,T/2 dt92t (D. 1)
V0 1 - V2 sin t

which may be written as a series in k2 :

[1k I+-k + k4 O(k6) (D.2)
2 14 i4

as given at Eq. 900.00 of Ref. [10] where the remaining terms in the series are

given as a convenient recurrence formula.

D.2 Complete Elliptic Integral of the Second Kind

The complete elliptic integral of the second kind is defined by Eq. 110.07 of

Ref. [10]:

E(k) = ]0 V/1 _ V sin 29dd (D.3)

which may be written as a series in k2 as given at Eq. 900.07 of Ref. [10]:

[~)= '1 - 1 k2_ 3- + 0 (k')] (DA4)
2 1 4 64

D.3 Normal Complete Elliptic Integral of the Third Kind

The normal complete elliptic integral of the third kind is defined by Eq. 110.08

of Ref. [10]:

I(a 2 , k) = fo0 dc (D.5)

(1 - a2 sin 2 W) /1 - k2 sin 2

We begin by expanding the integrand of Eq. (D.5) (dI/dp = dII(,p, a 2 , k)/dV)

in a Taylor series about k2 = 0 and a 2 = 0:

d -I=+ (a2 - )sin p + O(k4,a4) (D.6)
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Carrying out the integration defined in Eq. (D.5) gives the following approxima-

tion for II(a 2 , k) for small modulus and parameter:

D.4 Heuman's Lambda Function

As with the expansion of fl(a 2 , k), we obtain an approximate expression for

Ao(ik, k) for small k2 by first expanding the integrand in a power series in k,

then evaluating the resulting integral. Thus, using Eq. 730.04 of Ref. [10], we

have

dAo(so, k) _ 2(E - 0' 2 K sin2 W) (D.8)
d~p 7r Wk2 sin 2 W

Replacing the complimentary modulus k' via k' = 1 - k , this becomes

dAo(o, k) _ 2[E - (1 - k2)K sin 2 W] (D.9)
dwo 7 Icos2 so+kVsin 2 V

Making use of the fact that (P E [0, r/21, another rewrite gives

dAo (w, k) _2[E - (1 - k2 )K sin 2 W) (D.10)
dvs r Coss V1+kV tan2 W

which may readily be expanded in a power series in small k2:

dAo(so,k) _2 (1
' - <(E - K)- +Kcoso (D. 11)
dw 7fCos W

1 (E -K) 1 E +KloVk 2
2iL cos3 W Coss WJ

+1 [3 (E-K) 1 -(3E -5K) 1
+24 \ cos 5s V 2 41 cos3 W

T73E_ ) I--- Kcoso]k 4
4 4 cos Wp

+0 (0)}
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Integrating over the interval W E [0, 4], we obtain

Ao(,k) = 2{(E- K)L + Ksin (D.12)

+ [ ( +K)L

(E -K) "' 2-Ksin k2

[3 1 sine4

+ (3E + K)L - (15E - 11K) -in

+ 3(E - )sine ?k K sine 0432 )-C s

+0 (l

where

L"-In (1 +sin 0) (D.13)

Cos l

The next step in expanding A0 is to substitute the series for K(k) and E(k)

into Eq. (D.12). Carrying out this substitution gives

Ao(4,k) =sin 0 1 - 1k2+ (16c7s2 ) k 4 + +0(0) (D14)



Appendix E

A Simple Second-Order Example

In Chapter 3, we reduced the four Euler equations for the axial gyrostat,

i = (i 2 - i 3)x 2X3  (E.1)

-2 = (i 3xI - A) X3 (E.2)

i3 (i2Xl -P) X2 (E.3)

A, = (E.4)

to three equations where the slow-fast separation is evident:

S= l±Vy2(x,)-Y y-y3(x,A) (E.5)

=-2x (E.6)

C e(E.7)

where x x1, and y2(X, p') and y3(x, M) are the bounding parabolas defined at

Eqs. (3.60) and (3.61), and shown in Fig. 4.5. Then, in Chapter 6, we used the

method of averaging to obtain a single first-order equation for the slow flow:

y= -2(yp) (E.8)

where T(y, u) is the average of x over one period of the unperturbed motion, and

0' = do/dA.
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In this appendix, we present the equivalent analysis for a general class of non-

linear second-order oscillators with a slowly-varying parameter. After developing

the general results, we treat in some detail a specific example.

E.1 The General System

The system of equations we are interested in here is:

+ 49 (x, ) = 0 (E.9)

(E.10)

where V(x,py) is a potential function. When e = 0, I = CONST, and Eq. (E.9)

admits the energy integral

y = _.i2 + V(x;p,) = CONST (E.11)

2

from which

= 1/2(-y ; (E.12)

which may be separated to obtain

I =() _- - j dt = t (E.13)

The reader should note the similarity of Eq. (E.13) to Eq. (3.64). In particular,

V(x,pu) is analogous to either of y2(x,IA) or y3(x,g). In order for i to be a

real-valued function, we require y V(x; p).

For a general potential, V(x; p), Eq. (E.13) will be difficult, if not impossible,

to integrate; however, if V(x; j4) is a polynomial of small degree in x, then the

equation may be solved explicitly. More precisely, if the degree is n, then the

cases listed in Table E.1 are possible. Note that n = 1 implies i = CONST (for

= 0), and leads to a polynomial solution for x(t). Hyperelliptic integrals are

discussed in Ref. [10, pp. 252-271]; in particular, it is shown that several classes

of hyperelliptic integrals can be reduced to sums of elliptic integrals. We do not

discuss hyperelliptic integrals further.
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Table E.1. Classification of the e = 0 Integral

n Type of Integral in Eq. (E. 13)

1,2 elementary

3,4 elliptic

> 5 hyperelliptic

Now, as with spinup of gyrostats, we are primarily interested in the e 5 0

case, in which y and A are not constant. In this case, one may easily show that

= CV(x,p A) (E.14)

where the subscript p denotes partial differentiation with respect to I. Equa-

tion (E.14) is valid for any e. Thus, Eqs. (E.9) and (E.10) may be rewritten

as

= ± 2(y- V(x,i)) (E.15)

= eV (X,A) (E.16)

= 6 (E.17)

which are quite similar to Eqs. (E.5)-(E.7).

Finally, if a periodic e = 0 solution for x(t) can be explicitly determined by

evaluating the integral in Eq. (E.13), and if V(x; p) is sufficiently simple, we

may apply the method of averaging to this system, obtaining a single slow flow

equation:

Y' = V(Y, A) (E.18)

where

1 T

T o (, )dt 
(E. 19)

and T is the period of the e = 0 solution for x(t).
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E.2 An Example with Cubic V(x, tL)

In this section, we apply the results obtained in the previous section to the

particular case where V(x,/p) is a cubic polynomial in x, which implies that

Eq. (E.9) has a quadratic nonlinearity. Specifically, we use

1 + px + X2 -0 (E.20)

A 6 (E.21)

To emphasize the relationship between this system and the gyrostat, we use

y1(x, IA) to represent the potential function V(x, i); that is,

y1(x, A) = lpx2 + 1X3 (E.22)2 3

When e = 0, the energy integral is

1.y = 2 + y1(x; A) (E.23)

When c 0, Eqs. (E.15)-(E.17) become (cf. Eqs. (E.5)-(E.7)):

= ±-2 2(y-yl(x,pu)) (E.24)

= (E.25)
2

A = C (E.26)

Note that for ± to be real, we need y yl(x,p).

In Fig. E.1, we show the xy plane for this system for a fixed value of y, as

well as the frozen phase portrait for the same value of u. Note that the local

maximum of yi (x, M), y (p) = yl(-M, p) = A 3/6, corresponds to the saddle point

in the phase plane.

Now, the e = 0 solution for x(t) for this system results from evaluating the

elliptic integral, Eq. (E.13), with the particular potential function yj (x; p). Writ-

ing Eq. (E.24) as i= 4-W2, the c = 0 solution depends on the roots of the

cubic polynomial

P(x) = 2 y- AWx2 - x3) (E.27)
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Figure E.I. The xy Plane and Phase Plane for Quadratic Nonlinearity (t = 1.5).
The dotted lines of constant energy in the xy plane correspond to the level curves
of the frozen phase portrait in the xi plane. The thick level curves in the xi
plane represent the three critical trajectories separating the regions in which the
form of the unperturbed solution is distinct.
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It is apparent from Fig. E.1 that for positive it, there are four different cases: 1)

y y*; 2a) 0 < y < y , x > -M; 2b) 0 < y S yj, x < -I; and 3) y <0. Cases 1

and 3 correspond to one real and two complex roots of the cubic, while Cases 2a

and 2b correspond to three real roots. In each case the form of the solution is

distinct.

We only develop the solution for Case 2a, since it is clearly oscillatory. We

denote the three real roots to P(x) = 0 by a, b, and c, with a > x > b > c. Thus

Eq. 236.00 of Ref. [10] applies, and the e = 0 solution is

x(u; k) = a - (a - b)sn 2 (u; k) (E.28)

where

= a- b (E.29)a-c

u = At +uO (E.30)

2 = 3- (a -c) (E.31)

To average the slow equations, (E.25) and (E.26), we need to evaluate the average

of x 2 (u; k) over one period of this periodic solution; that is,

-ICz = KX (u;k)du (E.32)

Making use of Eqs. 310.02 and 310.04 of Ref. [10], we obtain after simplification

X2 (yp) = a2 2 a(-C)(K-E)+ (E.33)
K

(a - c) (2 + k2 )K - 2(1 + k2 )E} (E.34)

Note that k2 = 0 implies K = E, from which x2 = 0, as expected, since this

corresponds to the center at (x, i) = (0, 0).

Now, analogous to our development in Chapter 6, we have reduced the study

of Eqs. (E.20) and (E.21) to the study of the averaged slow flow described by

V = T2(y,A) (E.35)
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Region 1/

- -- -- -Region 2

Region 3

Figure E.2. The py Plane for Quadratic Nonlinearity. The Region numbers
corTrespond to the four different cases discussed in the text, each solution having
a distinct form, and to the superscripts on y in Fig. E.1. The A axis corresponds
to the center at (X, i) = (0, 0), as well as to an open orbit to the left of the saddle
point. More generally, in Region 2, two e = 0 orbits exist, the closed orbits
inside the homoclinic orbit, and the open orbits to the left of the saddle point
(cf. Fig. E.1). The dashed curve, y14(I) represents the saddle point, as well as the
separatrices. The crossing of this curve by trajectories of the perturbed system
is a separatrzx crossing as discussed in Chapters 6 and 7.
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where x2 is given at Eq. (E.33), and ()' = d()/dp. That is, we can now study the

flow in the Py plane shown in Fig. E.2.

We do not continue this example, as it is only intended to illustrate the

techniques used in this thesis by applying them to a simpler problem. However,

we can easily prove an assertion about escape from resonance for this problem

using the tools developed here. Consider a situation where p(O) > 0, and x(O)

lies in the potential well inside the homoclinic orbit of the saddle in Fig. E.1. A

non-trivial question is: For e > 0 is it possible for the trajectory to escape and

move to one of the regions of unbounded trajectories? The answer is no, and has

been shown for a similar system in Rand et al [84], using a different argument.

We show that no motion which starts inside the separatrix can later be out-

side the separatrix as follows. Recall that y = y*(,u) is the energy level of the

separatrix. We show that if at some time y < y*(p) (i.e., motion lies inside

the separatrix), then y < y(p) for all future times (i.e., motion stays inside

the separatrix). The method is to show that Y = y - y is a monotonically

decreasing function of time, i.e., Y' < 0. We have = Ex2/2, and it is easy to

show that 14 = p2/2, so k = e(x 2 - 2)/2. For motion inside the separatrix,

-P < x < P/2 (cf. Fig. E.1). Therefore x2 < ,A for any motion inside the sepa-

ratrix, giving k < 0. We emphasize that the strict inequality holds here. that is,

the energy of the system cannot "catch up" with the energy of the saddle point.

Hence, we have proved that escape from inside the homoclinic orbit cannot occur.
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